
CS510 Operating System Foundations
Bruce Irvin (thanks to Jon Walpole for the original version of the slides)

Page Replacement
User-program is executing
A Page Fault occurs!

- Indicates that the needed page is not in memory
Select some frame and remove the page in it

- If it has been modified, it must be written back to disk
the “dirty” bit in its page table entry tells us if this is

necessary
Figure out which page was needed from the faulting addr
Read the needed page into this frame
Restart the interrupted process by retrying the same instruction

Page Replacement Algorithms
Which frame to replace?

Algorithms:
The Optimal Algorithm
First In First Out (FIFO)
Not Recently Used (NRU)
Second Chance / Clock
Least Recently Used (LRU)
Not Frequently Used (NFU)
Working Set (WS)
WSClock

The Optimal Algorithm
Idea:

Select the page that will not be needed for the longest time

Optimal Page Replacement
Replace the page that will not be needed for the longest
Example:

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a
b b b b
c c c c
d d d d

X

Optimal Page Replacement
Select the page that will not be needed for the longest time
Example:

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a a a a a a
b b b b b b b b b
c c c c c c c c c
d d d d e e e e e

X X

Optimal Page Replacement
Idea:

Select the page that will not be needed for the longest time

Problem?

Optimal Page Replacement
Idea:

Select the page that will not be needed for the longest time

Problem:
Can’t know the future of a program
Can’t know when a given page will be needed next
The optimal algorithm is unrealizable

Optimal Page Replacement
However:

We can use it for comparison purposes
- Run the program once
- Generate a log of all memory references
- Use the log to simulate various page replacement algorithms
- Can compare others to “optimal” algorithm

FIFO Algorithm
Always replace the oldest page …

- Replace the page that has been in memory for the longest
time

Simple to implement

FIFO Algorithm
Replace the page that was first brought into memory

Example: Memory system with 4 frames:

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0
Frames 1

2
3

Page faults

a a a
b

c c c c
d d

X X X X X

FIFO Algorithm
Replace the page that was first brought into memory

Example: Memory system with 4 frames:

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0
Frames 1

2
3

Page faults

a a a a a a a
b b b b b

c c c c e e e e
d d d d d d

X X X X X X

FIFO Algorithm
Replace the page that was first brought into memory

Example: Memory system with 4 frames:

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0
Frames 1

2
3

Page faults

a a a a a a a c
b b b b b b

c c c c e e e e e
d d d d d d d

X X X X X X X

FIFO Algorithm
Replace the page that was first brought into memory

Example: Memory system with 4 frames:

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c a

Page 0
Frames 1

2
3

Page faults

a a a a a a a c c
b b b b b b b

c c c c e e e e e e
d d d d d d d a

X X X X X X X

FIFO Algorithm
Always replace the oldest page.

- Replace the page that has been in memory for the longest
time

Implementation
Maintain a list of all pages in memory
Keep it in order of when they came into memory
Add new page to head of list
The page at the tail of the list is oldest

FIFO Algorithm
Always replace the oldest page.

- Replace the page that has been in memory for the longest
time

Implementation
Maintain a list of all pages in memory
Keep it in order of when they came into memory
Add new page to head of list
The page at the tail of the list is oldest

Advantages
Simple to implement and needs no extra hardware support

FIFO Algorithm
Disadvantage?

FIFO Algorithm
Disadvantage:

The oldest page may be needed again soon
Some page may be important throughout execution
It will get old, but evicting it will cause an immediate page

fault

Temporal locality: that which was needed recently probably
will be needed again in the near future.

FIFO ignores temporal locality

How Can We Do Better?
Need an approximation of how likely each frame is to be

accessed in the future
- If we base this on past behavior we need a way to track

past behavior
- Tracking memory accesses requires hardware support to

be efficient

Referenced and Dirty Bits
Each page table entry (actually TLB entry!) has a

- Referenced bit - set by TLB when page read or updated
- Dirty / modified bit - set when page is updated
- If TLB entry for this page is valid, it has the most up to date

version of these bits for the page
- OS must copy them into the page table entry during fault handling. i.e.,

TLB flushing becomes more complicated

Idea: use the information contained in these bits to drive the
page replacement algorithm

Not Recently Used Algorithm
Uses the Referenced Bit and the Dirty Bit

Initially, all pages have
- Referenced Bit = 0
- Dirty Bit = 0

Periodically... (e.g. whenever a timer interrupt occurs)
- Clear the Referenced Bit
- Referenced bit now indicates “recent” access

Not Recently Used Algorithm
When a page fault occurs...

Categorize each page...
Class 1: Referenced = 0 Dirty = 0
Class 2: Referenced = 0 Dirty = 1
Class 3: Referenced = 1 Dirty = 0
Class 4: Referenced = 1 Dirty = 1

Choose a victim page from class 1 … why?
If none, choose a page from class 2 … why?
If none, choose a page from class 3 … why?
If none, choose a page from class 4 … why?

Second Chance Algorithm
A mix of NRU and FIFO
Sometimes (unfortunately) called the “Clock” algorithm
OS maintains circular list of valid (in-memory) pages
Algorithm: look at the next page in the circular list

If its “referenced bit” is 0 and dirty bit is 0
- Then select it for replacement

Else
- It was used recently; don’t want to replace it
- Clear its “referenced bit”
- If dirty, then schedule it for write to swap file
- Move on to next frame in the list

Repeat

Implementation of Second Chance
Maintain a circular list (called “the clock”) of pages in memory
Set ref bit for the page whenever the page is referenced
Search list looking for a victim page that does not have the

referenced bit set (and is not dirty)
- If the bit is set, clear it and move on to the next page
- Replaces pages that haven’t been referenced for one

complete clock revolution
1

1

2

3

5

4

0 clock bit
frame #

Least Recently Used Algorithm
A refinement of NRU that orders how recently a page was used

- Keep track of when a page is used
- Replace the page that has been used least recently

Least Recently Used Algorithm
Replace the page that hasn’t been referenced in the longest time

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b

2 c
3 d

Page faults

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d
d d d d d d d d c c

X X X

Least Recently Used Algorithm
But how can we implement LRU?

Least Recently Used Algorithm
But how can we implement LRU?

Idea #1:
- Keep a list of all pages
- On every memory reference, Move that page to the front

of the list
- The page at the tail of the list is replaced

Least Recently Used Algorithm
But how can we implement LRU?

… without requiring every access to be recorded?

Idea #2:
- MMU (hardware) maintains a counter
- Incremented on every CPU clock cycle
- Every time a TLB entry is used

- MMU writes the value to the TLB entry
- This timestamp value is the time-of-last-use
- Save TLB bookkeeping data to page table when needed

- When a page fault occurs
- OS looks through the page table
- Identifies the entry with the oldest timestamp

Not Frequently Used Algorithm
Bases decision of frequency of use rather than recency
Add a reference “counter” to the reference “bit”
On every clock interrupt, the OS looks at each page.

- If the reference bit is set increment that page’s counter &
clear the bit

The counter approximates how often the page is used
For replacement, choose the page with lowest counter

Not Frequently Used Algorithm
Problem:

Some page might be heavily used
- Its counter is large

The program’s behavior changes to a new phase of
execution
- Now, this page is rarely used

NFU never forgets!
- This page will never be chosen for replacement!

Fix: NFU With Aging
Associate a counter with each page
On every clock tick, the OS looks at each page.

- Shift the counter right 1 bit (divide its value by 2)
- If the reference bit is set...

- Set the most-significant bit
- Clear the Referenced Bit

T
1

100000 = 32
T

2
010000 = 16

T
3

001000 = 8
T

4
000100 = 4

T
5

100010 = 34

The Working Set
Demand paging

- Pages are only loaded when accessed
- When process begins, all pages marked INVALID

The Working Set
Demand paging

- Pages are only loaded when accessed
- When process begins, all pages marked INVALID

Locality of reference
- Processes tend to use only a small fraction of their pages

The Working Set
Demand paging

- Pages are only loaded when accessed
- When process begins, all pages marked INVALID

Locality of reference
- Processes tend to use only a small fraction of their pages

Working Set
- The set of pages a process needs
- If working set is in memory, no page faults
- What if you can’t get working set into memory?

The Working Set
Thrashing

- If you can’t get working set into memory page faults
occur every few instructions

- Little work gets done
- It’s all overhead all of the time!

Working Set Algorithm
Based on prepaging (prefetching)

- Load pages before they are needed

Main idea:
- Try to identify the process’s working set based on time
- Keep track of each page’s time since last access
- Assume working set valid for T time units
- Replace pages older than T

Working Set Algorithm
Current Virtual Time

- Only consider how much CPU time this process has seen

Implementation
- On each clock tick, look at each page
- Was it referenced since the last check?

- Yes: make a note of Current Virtual Time
- If a page has not been used in the last T msec,

- Assume it is not in the working set!
- Evict it
- Write it to swap space if it is dirty

Working Set Algorithm

a

Page Fault Frequency
If T is too small, page fault frequency will be high
If you make it bigger page fault frequency will decline

Page Fault Frequency

Too High: Need to give this
process some more frames!

Too Low: Take some frames
away and give to other processes!

Page Fault Frequency
Measure the page fault frequency of each process
Count the number of faults every second

May want to consider the past few seconds as well

Page Fault Frequency
Measure the page fault frequency of each process
Count the number of faults every second

May want to consider the past few seconds as well

Aging:
Keep a running value
Every second

- Count number of page faults
- Divide running value by 2
- Add in the count for this second

Which Algorithm is Best?

Modeling Algorithm Performance
Run a program

- Look at all memory references
- Look at which pages are accessed

0000001222333300114444001123444
- Eliminate duplicates

012301401234

This defines the Reference String
- Use this to evaluate various algorithms
- Count page faults given the same reference string

Proactive Replacement
Replacing victim frame on each page fault typically requires two

disk accesses per page fault

Alternative à the O.S. can keep several pages free in
anticipation of upcoming page faults.

In Unix: low and high water marks

high water mark

low water mark

low < # free pages < high

UNIX Page Replacement
Clock algorithm for page replacement

- If modified/dirty à write to disk (still keep it in memory
though)

High and low water marks for free pages
- Pages on the free-list can be re-allocated if they are

accessed again before being overwritten

Load Control: if page replacement is too frequent,
then suspend/swap entire processes

Local vs. Global Replacement
Assume several processes: A, B, C, ...
Some process gets a page fault (say, process A)
Choose a page to replace.

Local page replacement
- Only choose one of A’s pages

Global page replacement
- Choose any page

Local vs. Global Replacement

Original Local Global

Local vs. Global Replacement
Assume we have

- 5,000 frames in memory and 10 processes
Idea: Give each process 500 frames
Is this fair?

- Small processes do not need all those pages
- Large processes may benefit from even more frames

Idea:
- Look at the size of each process (… but how?)
- Give them a pro-rated number of frames with some minimum

Load Control
Assume:

- The best page replacement algorithm
- Optimal global allocation of page frames

Load Control
Assume:

- The best page replacement algorithm
- Optimal global allocation of page frames

Thrashing is still possible!

Load Control
Assume:

- The best page replacement algorithm
- Optimal global allocation of page frames

Thrashing is still possible!
- Too many page faults!
- No useful work is getting done!
- Demand for frames is too great!

Load Control
Assume:

- The best page replacement algorithm
- Optimal global allocation of page frames

Thrashing is still possible!
- Too many page faults!
- No useful work is getting done!
- Demand for frames is too great!

Solution:
- Get rid of some processes (temporarily swap them out)
- Two-level scheduling (swapping with paging)

