
Page Tables
When and why do we access a page table?

- On every instruction to translate virtual to
physical addresses?

Page Tables
When does the OS access a page table?

- On every instruction to translate virtual to
physical addresses?

No, in real machines it is only accessed
- On TLB miss faults to refill the TLB
- During process creation and destruction
- When a process allocates or frees memory?

Translation Lookaside Buffer
Problem: MMU can�t keep up with the CPU if it

goes to the page table on every memory
access!

Translation Lookaside Buffer
Solution:

- Cache the page table entries in a hardware
cache

- Small number of entries (e.g., 64)
- Each entry contains page number and other

stuff from page table entry
- Fast and Fully associative:

- indexed on page number
- You can do a lookup in a single cycle
- No conflict misses, only compulsory and

capacity misses

Translation Lookaside Buffer
CPU

p o

f o

page
#

frame
#

TLB

TLB Hit Physical
memory

Page
Table

Hardware Operation of TLB

Page Number Frame Number
D R W Vunused

50 D R W Vunused

24 D R W Vunused

19 D R W Vunused

6 D R W Vunused

23
17
92

12
5

37

Key

Other

Hardware Operation of TLB
0121323

page number offset

0121331
frame number offset

Page Number Frame Number
D R W Vunused

50 D R W Vunused

24 D R W Vunused

19 D R W Vunused

6 D R W Vunused

23
17
92

12

virtual address

physical address

5

37

Key

Other

Hardware Operation of TLB
0121323

page number offset

0121331
frame number offset

Page Number Frame Number
D R W Vunused

50 D R W Vunused

24 D R W Vunused

19 D R W Vunused

6 D R W Vunused

23
17
92

12

physical address

5

37

Key

Other

virtual address

Hardware Operation of TLB
0121323

page number offset

0121331
frame number offset

Page Number Frame Number
D R W Vunused

50 D R W Vunused

24 D R W Vunused

19 D R W Vunused

6 D R W Vunused

23
17
92

12

physical address

5

37

Key

Other

virtual address

Hardware Operation of TLB
0121323

page number offset

0121331
frame number offset

Page Number Frame Number
D R W Vunused

50 D R W Vunused

24 D R W Vunused

19 D R W Vunused

6 D R W Vunused

23
17
92

12

physical address

5

37

Key

Other

virtual address

Software Operation of TLB

What if the entry is not in the TLB?
- Go look in the page table in memory
- Find the right entry
- Move it into the TLB
- But which TLB entry should be replaced?

Software Operation of TLB

Hardware TLB refill
- Page tables in specific location and format
- TLB hardware handles its own misses
- Replacement policy fixed by hardware

Software refill
- Hardware generates trap (TLB miss fault)
- Lets the OS deal with the problem
- Page tables become entirely a OS data structure!
- Replacement policy managed in software

Software Operation of TLB

How can we prevent the next process from using the last
process’s address mappings?
- Option 1: empty the TLB on context switch

New process will generate faults until its pulls enough of its own
entries into the TLB

- Option 2: just clear the “Valid Bit” on context switch
New process will generate faults until its pulls enough of its own
entries into the TLB

- Option 3: the hardware maintains a process id tag on each TLB
entry

Hardware compares this to a process id held in a specific register …
on every translation

Page Tables
Do we access a page table when a process allocates

or frees memory?

Page Table Usage
Do we access a page table when a process allocates

or frees memory?
- Not necessarily

Library routines (malloc) can service small requests
from a pool of free memory already allocated
within a process address space

When these routines run out of space a new page
must be allocated and its entry inserted into the
page table
- This allocation is requested using a system call

Page Table Design
Page table size depends on

- Page size
- Virtual address length

Memory used for page tables is overhead!
- How can we save space? … and still find entries quickly?

Three options
- Single-level page tables
- Multi-level page tables
- Inverted page tables

Single-Level Page Tables

Single-level
page table

frames
in

memory
•••

page number offset
20-bits 12-bits

Single-Level Page Tables

Single-level
page table

frames
in

memory
•••

page number offset
20-bits 12-bits

Single-Level Page Tables

Single-level
page table

frames
in

memory
•••

page number offset
20-bits 12-bits

Problem: requires one page
table entry per virtual page!

Single-Level Page Tables

Single-level
page table

frames
in

memory
•••

page number offset
20-bits 12-bits

32 bit addresses and 4KB pages
means 220 page table entries per
process

Single-Level Page Tables

Single-level
page table

frames
in

memory
•••

page number offset
20-bits 12-bits

64 bit addresses and 4KB pages
means 252 page table entries per
process!

Multi-Level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory
•••

Multi-Level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory
•••

PT1 offsetPT2
10-bits 10-bits 12-bits

Multi-Level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory
•••

PT1 offsetPT2
10-bits 10-bits 12-bits

Multi-Level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory
•••

PT1 offsetPT2
10-bits 10-bits 12-bits

Multi-Level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory
•••

PT1 offsetPT2
10-bits 10-bits 12-bits

Multi-Level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory

•••

PT1 offsetPT2
10-bits 10-bits 12-bits

Multi-Level Page Tables

Top-level
Page table

2nd-level tables

frames
in

memory
•••

PT1 offsetPT2
10-bits 10-bits 12-bits

Multi-Level Page Tables

Ok, but how exactly does this save space?

Multi-Level Page Tables

Ok, but how exactly does this save space?
Not all pages within a virtual address space are allocated

- Not only do they not have a page frame, but that range of
virtual addresses is not being used

- So no need to maintain complete information about it
- Some intermediate page tables are empty and not

needed

We could also page the page table
- This saves space but slows access … a lot!

