
Memory	Management

PSU	CS	532
Prof.	Karen	L.	Karavanic



Practice	Problem	revisited	(multilevel	cache)

• Suppose	that	in	1000	memory	references	
there	are	40	misses	in	the	first-level	cache	and	
20	misses	in	the	second-level	cache.		What	are	
the	various	miss	rates?	
– One	standard	calculation:	
– Local	Miss	rate	is	the	number	of	misses	in	a	cache	
divided	by	the	total	number	of	memory	accesses	
to	this	cache.

– Global	miss	rate	is	the	number	of	misses	in	the	
cache	divided	by	the	total	number	of	memory	
accesses	generated	by	the	processor

CS	532	Winter	2020 2



Memory Management

Memory – a linear array of bits, bytes, words, pages ...
- Each byte is named by a unique memory address
- Holds instructions and data for OS and user processes

Each process has an address space containing its instructions, 
data, heap and stack regions

When processes execute, they use addresses to refer to things 
in their memory (instructions, variables etc)

... But how do they know which addresses to use?



Addressing Memory

Cannot know ahead of time where in memory instructions and 
data will be loaded!
- so we can�t hard code the addresses in the program code

Compiler produces code containing names for things, but these
names can�t be physical memory addresses

Linker combines pieces of the program from different files, and 
must resolve names, but still can�t encode addresses

We need to bind the compiler/linker generated names to 
the actual memory locations before, or during execution



Binding Example

Prog P
:
:

foo()
:
:

End P

P:
:

push ...  
jmp _foo
:

foo: ...

P:
:

push ...  
jmp 75
:

foo: ...

0

75

P:
:

push ...  
jmp 175
:

foo: ...

0

100

175

Library
Routines

P:
:

push ...  
jmp 1175
:

foo: ...

1000

1100

1175

Library
Routines

Compilation Assembly Linking Loading



Relocatable Addresses

How can we execute the same processes in different 
locations in memory without changing memory 
addresses?

How can we move processes around in memory 
during execution without breaking their addresses?



Key Concept: Virtual Addresses

Addresses issued by running processes are 
“virtual”. they must be translated.

Hardware translates the virtual addresses at 
runtime. Always. Every address. On every 
reference.



Simple Idea: Base/Limit Registers

Simple runtime relocation scheme
- Use 2 registers to describe a processes memory partition
- Do memory addressing indirectly via these registers

For every address, before going to memory ...
- Add to the base register to given virtual address
- Compare result to the limit register (& abort if larger)



Dynamic Relocation via Base Register
Memory Management Unit (MMU)

- Dynamically converts re-locatable logical addresses to 
physical addresses

process i

Operating
system

Max addr

0

Max Mem

0

Physical memory 
address

Relocation register for process i

1000

+
MMU

Program generated 
address



Multiprogramming
Multiprogramming: a separate partition per process
What happens on a context switch?

Store process base and limit register values
Load new values into base and limit registers

OS
Partition A

Partition B
Partition C

Partition D

Partition E

base

limit



Quick Quiz

Is it possible for two different processes to 
emit the same virtual address?



Swapping

When a program is running...
The entire program must be in memory
Each program is put into a single partition

When the program is not running why keep it in memory?
Could swap it out to disk to make room for other processes

Over time...
Programs come into memory when they get swapped in
Programs leave memory when they get swapped out



Swapping

Benefits of swapping:
Allows multiple programs to be run concurrently
… more than will fit in memory at once

Max mem

0

Operating
system

Process j

Process i 

Process m 

Process k 

Swap in

Swap out



Fragmentation



128O.S. 128O.S.

896

P1

576

320

P2

P6

P3

P4

P5

128O.S.

P1

352

320

224 P2

128O.S.

P1

288

320

224

64

P3

128O.S.

P1

288

320

224

64

P3

128O.S.

P1

288

320

128

64

96

P4

P3

128O.S.

288

320

128

64

96

P4

P3

128O.S.

288

224

128

64

96

96

P5

P4

P3

128O.S.

288

224

128

64

96

96

???
128



Dealing With Fragmentation
Compaction – from time to time shift processes around to 

collect all free space into one contiguous block
- Memory to memory copying overhead
- Memory to disk to memory for compaction via swapping!

P 6

P 5

P 4

P 3

128O.S.

288

224

128

64

96

96

???
128 P 6

P 5

P 4

P 3

128O.S.

288

224

128

256



How Big Should Partitions Be?

Programs may want to grow during execution
- How much stack memory do we need?
- How much heap memory do we need?

Problem:
- If the partition is too small, programs must be moved
- Requires copying overhead
- Why not make the partitions a little larger than 

necessary to accommodate �some� cheap growth?
- ... but that is just a different kind of fragmentation



Allocating Extra Space Within



Fragmentation Summary
Memory is divided into partitions
Each partition has a different size
Processes are allocated space and later freed
After a while memory will be full of small holes!

- No free space large enough for a new process even though 
there is enough free memory in total

If we allow free space within a partition we have fragmentation
External fragmentation = unused space between partitions
Internal fragmentation = unused space within partitions



What Causes These Problems?

Contiguous allocation per process leads to 
fragmentation, or high compaction costs

Contiguous allocation is necessary if we use a 
single base register
- ... because it applies the same offset to all 

memory addresses



Non-Contiguous Allocation
Why not allocate memory in non-contiguous fixed size pages?

- Benefit: no external fragmentation!
- Internal fragmentation < 1 page per process region

How big should the pages be?
- The smaller the better for internal fragmentation
- The larger the better for management overhead (i.e. data 

structures required to keep track of free pages)

The key challenge for this approach
How can we do secure dynamic address translation?
i.e., how do we keep track of where things are?



Paged Virtual Memory
Memory divided into fixed size page frames

- Page frame size = 2n bytes
- n low-order bits of address specify byte offset in a page
- remaining bits specify the page number

But how do we associate page frames with processes?
- And how do we map memory addresses within a process 

to the correct memory byte in a physical page frame?

Solution – per-process page table for address translation
- Processes emits virtual addresses
- CPU uses hardware to implement virtual to physical 

address translation



Virtual Addresses
Virtual memory addresses (what the process uses)

Page number plus byte offset in page
Low order n bits are the byte offset
Remaining high order bits are the page number

bit 0bit n-1bit 31

20 bits 12 bits

offsetpage number

Example: 32 bit virtual address
Page size = 212 = 4KB
Address space size = 232 bytes = 4GB



Physical Addresses
Physical memory addresses (what the CPU uses)

Page frame number plus byte offset in page
Low order n bits are the byte offset
Remaining high order bits are the frame number

bit 0bit 11bit 31

20 bits 12 bits

offsetFrame number

Example: 32 bit physical address
Frame size = 212 = 4KB
Number of frames = 220 ~ 1M frames
Max physical memory size = 232 bytes = 4GB



Address Translation

Hardware addresses to frame numbers

Memory management unit (MMU) has multiple offsets for 
multiple pages, i.e., a page-to-frame lookup table, known as 
a page table
- Like a base register except each entries value is 

substituted for the page number rather than added to it
- Quiz: Why don’t we need a limit register for each page?



MMU



Virtual Address Spaces
Here is the virtual address space (as seen by the process)

Lowest address

Highest address

Virtual Addr Space



Virtual Address Spaces
The address space is divided into “pages”

Page 0

Page N

Page 1

Virtual Addr Space

0
1
2
3
4
5
6
7

N

A Page



Virtual Address Spaces
In reality, only some of the pages are used

Virtual Addr Space

0
1
2
3
4
5
6
7

N

Unused



Physical Memory
Physical memory is divided into �page frames�

(Page size = frame size)

Physical memoryVirtual Addr Space

0
1
2
3
4
5
6
7

N



Virtual & Physical Address Spaces
Some frames are used to hold the pages of this process

These frames
are used for
this process

Virtual Addr Space Physical memory

0
1
2
3
4
5
6
7

N



Virtual & Physical Address Spaces
Some frames are used for other processes

Used by
other processes

Virtual Addr Space Physical memory

0
1
2
3
4
5
6
7

N



Virtual & Physical Address Spaces
Address mappings say which frame has which page

Virtual Addr Space Physical memory

0
1
2
3
4
5
6
7

N



Page Tables

Virtual Addr Space Physical memory

0
1
2
3
4
5
6
7

N

Address mappings are stored in a page table in memory
1 entry/page: is page in memory? If so, which frame is it in?



Key Concept: size

Note that the physical memory could be 
smaller than the virtual address space or it 
could be larger.

Note that it is possible to have multiple 
processes in memory at once, and the total 
used space might be larger than the size of 
physical memory.



Address Mappings
Address mappings are stored in a page table in memory

- one page table for each process because each process has its 
own independent address space

Address translation is done by hardware (ie the TLB ... 
translation-look-aside buffer)

How does the TLB get the address mappings?
- Either the TLB holds the entire page table (too expensive) 

or it knows where it is in physical memory and goes there for 
every translation (too slow)

- Or the TLB holds a portion of the page table and knows 
how to deal with TLB misses
- the TLB is a cache of page table entries



Process Context Switch

Every time OS switches processes it must 
point the MMU at a different, process-
specific page table.

And OS must flush the TLB OR the TLB must 
have extra hardware bits indicating which 
process’s translations are cached in each 
TLB entry (common)

NOTE: TLBs are often fully associative (so no 
conflict misses)



Two Types of TLB
What if the TLB needs a mapping it doesn’t have?

Software managed TLB
- It generates a TLB-miss fault which is handled by the operating 

system (like interrupt or trap handling)
- The operating system looks in the page tables, gets the 

mapping from the right entry, and puts it in the TLB, perhaps 
replacing an existing entry

Hardware managed TLB (Intel)
- It looks in a pre-specified physical memory location for the 

appropriate entry in the page table
- The hardware architecture defines where page tables must be 

stored in physical memory
- OS loads current process page table there on context switch!



Quiz

What is the difference between a virtual and a physical address?
What is address binding?
Why are programs not usually written using physical addresses?
Why is hardware support required for dynamic address 

translation?
What is a page table used for?
What is a TLB used for?
How many address bits are used for the page offset in a system 

with 8KB page size?


