
1

Killing Zombies, Working, Sleeping,
and Spawning Children

CS 532
Prof. Karavanic

(c) 2020 Karen L. Karavanic

(c) 2020 Karen L. Karavanic2

An Operating System…

■ Is a program that controls the execution of
application programs
◆ OS must relinquish control to user programs and

regain it safely and efficiently
◆ OS tells the CPU when to execute other programs

and what specific program to execute next
■ How to provide the illusion of unlimited CPU

availablity?
◆ Virtualization.

The Process Model
■ How should we represent the running code / program?
■ What does the OS do?

● Protect system resources
4E.g. from user programs, from malicious code

● Allocate memory
● Allocate processor time
● Handle errors
● Accounting
● Given this list of tasks, what is the best abstraction for

the running code?
4Proposal #1: function

– How can we describe a running function?

The Process Model
■ How should we represent the running code / program?
■ What does the OS do?

● Protect system resources
4E.g. from user programs, from malicious code

● Allocate memory
● Allocate processor time
● Handle errors
● Accounting
● Given this list of tasks, what is the best abstraction for

the running code?
4Proposal #1: function

– How can we describe a running function?

4Proposal #2: “whole program”

The Process Model
■ A Process = a program in execution
■ A process includes:

● program counter (PC): what instruction to execute
next?

● Stack: one stack frame per function called
● Register values: what values currently held in

hardware registers?
■ Program is passive entity, process is active

● Program becomes process when executable file
loaded into memory

The Process Model
■ The Process Address Space includes:

● text section: the program code
● program counter: next instruction to execute
● Values of processor registers: smallest, fastest memory
● Stack containing temporary data

4Function parameters, return addresses, local variables
● Data section containing global variables
● Heap containing memory dynamically allocated during run time
● Execution of program started via GUI mouse clicks, command

line entry of its name, etc
■ One program can be several processes

● Consider multiple users executing the same program

7

Processes
• process == task

– key idea: the OS virtualizes the CPU: we can
have more than one program executing but each
one is written as if it has the CPU to itself

– unit of execution. in timeshare system, each
user had a separate shell. in multiprocessor
server or multicore chip, user has > 1 task
running concurrently

– process has context: structures in system that
constitute that process

(c) 2020 Karen L. Karavanic

3.8 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Process Control Block (PCB)

Information associated with each process includes:
■ Process state
■ Program counter value
■ CPU register values
■ CPU scheduling information
■ Memory-management information
■ Accounting information
■ I/O status information

3.9 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Process Scheduling

■ Maximize CPU use, quickly switch processes onto CPU for
time sharing

■ Process scheduler selects among available processes for
next execution on CPU

■ Maintains scheduling queues of processes
● Job queue – set of all processes in the system
● Ready queue – set of all processes residing in main

memory, ready and waiting to execute
● Device queues – set of processes waiting for an I/O

device
● Processes migrate among the various queues

10

Processes
The Process Model

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant

(c) 2020 Karen L. Karavanic

3.11 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Context Switch

■ When CPU switches to another process, the system must
save the state of the old process and load the saved state for
the new process via a context switch.

■ Context of a process represented in the PCB
■ Context switch time is overhead; the system does no useful

work while switching
● The more complex the OS and the PCB -> longer the

context switch
■ Context switch time is dependent on hardware support

● Ex: Some hardware provides multiple sets of registers per
CPU -> multiple contexts loaded at once

12

Process Creation
Principal events that cause process creation:
• System initialization
• Execution of a process creation system
• User request to create a new process
• Initiation of a batch job

(c) 2020 Karen L. Karavanic

3.13 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Process Creation
■ Parent process creates child processes, which, in

turn create grandchild processes, forming a tree of
processes

■ Generally, process identified and managed via a
process identifier (pid)

■ Resource sharing – different models
● Parent and children share all resources
● Children share subset of parent’s resources
● Parent and child share no resources

■ Execution
● Parent and children execute concurrently
● Parent waits until children terminate

3.14 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Process Creation (Cont.)

■ Address space
● Child is created as a duplicate of parent:

4Same program loaded into text segment
4Same values in data segment
4Same stack
4Same register values
4Same PC value

■ UNIX/Linux examples
● fork system call creates new process
● exec system call used after a fork to replace the process’

memory space with a new program

3.15 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Process Creation

3.16 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Process Termination

■ Process executes last statement and asks the operating system to
delete it (exit)
● Output data from child to parent (via wait)
● Process’ resources are deallocated by operating system

■ Parent may terminate execution of children processes (abort)
● Child has exceeded allocated resources
● Task assigned to child is no longer required
● If parent is exiting

4 Some operating system do not allow child to continue if its
parent terminates

– All children terminated - cascading termination

17

Process Termination

Conditions which terminate processes
1. Normal exit (voluntary)
2. Error exit (voluntary)
3. Fatal error (involuntary)
4. Killed by another process (involuntary)

The kill command:
kill [pid]
can any process kill any other process?

(c) 2020 Karen L. Karavanic

18

Unix System Calls
for Process Management

s: an error code
pid: a process ID
status: Did the process exit normally?

Yes:
No:

(c) 2020 Karen L. Karavanic

19

What is a zombie
process??

(c) 2020 Karen L. Karavanic

20

POSIX signals - simple IPC
• IPC - interprocess communication
• Also used for kernel to process communication
• software interrupts for application

– you arrange for asynchronous call to a function that will
handle the signal

• signals are events – we can’t predict what line of
code will be executing when they occur

• can be caught, sent, or ignored (SIG_IGN)
• use kill(1) and kill(2) to send them (some of

them)
(c) 2020 Karen L. Karavanic

21

Example Signal Functions

• SIGINT - catch control-C, exit program
• SIGSEGV - o.s. (mmu) forces program to exit

because of memory violation
• SIGHUP - signal sent to daemon to tell it to exit

system cleanly (shutdown) or to reread control file
• SIGSTOP, SIGCONT, job control of processes

(SIGSTOP goes to background)
• SIGKILL - go away NOW ... % kill -9 <pid>

(c) 2020 Karen L. Karavanic

22

POSIX Signals

The signals required by POSIX.

(c) 2020 Karen L. Karavanic

23

Unix shells

• Shell is not part of the kernel, but makes heavy
use of it

• User logs in over terminal, network, gets shell
command line

• Each command is executed in a child process
• Each process at startup has 3 open file descriptors:

stdin, stdout, stderr (fd=0, 1, 2)
• Child inherits these from parent

(c) 2020 Karen L. Karavanic

24

shellgame ...

• shells handles redirection and pipes with
certain metacharacters (>,<,|)

• date > file
• sort < file1 > file2
• ls | more

• can execute programs in background too
• ls &

(c) 2020 Karen L. Karavanic

25

Steps in executing ls at the Command line

(c) 2020 Karen L. Karavanic

