
CS	532	HW	2	
DUE	Thursday	Jan	23	before	6pm	

	
Part	I	–	Programming	Exercise	
Introduction	
This	exercise	is	designed	to	illustrate	the	process	interface	in	UNIX	systems.		You	
will	implement	a	Unix	shell	program.	You	will	write	a	C	program	that	will	act	as	a	
simple	shell	command	line	interpreter	for	the	Linux	kernel.	Your	shell	program	
should	use	the	same	style	as	the	Bourne	shell	for	running	programs.	[Note:	you	can	
run	the	Bourne	shell	by	typing	sh.]	The	Bourne	Shell	was	originally	designed	by	
Ritchie	and	Thompson.		There	are	4	parts	to	this	exercise,	A	–	D.	
	
(A) Command	Line	Reader	and	Makefile	

	
WRITE	a	C	program	in	a	file	named	reader.c	with	this	functionality:	

1.	Print	the	prompt:	“MY	SHELL>”	
2.	Read	one	line	of	user	input	(a	single	command	line)	using	fgets()	
3.	Print	the	command	line	(the	user	input	)	to	stdout	
4.	Repeat	(1)-(3)	until	an	EOF	condition	(ex:	the	user	types	Ctrl-D).		

HINT:	look	at	feof	to	see	how	to	identify	end	of	file;	this	works	well	with	fgets()	for	
reading	the	input	from	the	stream	stdin.	
	
WRITE	a	make	file	named	makefile1	to	build	your	command	line	reader	with	gcc	
and	with	debugging	enabled.	The	make	target	should	be	cmd_reader,	and	the	name	
of	the	executable	should	be	cmd_reader.	
	
TEST	your	program	with	several	different	commands,	numbers	of	arguments,	etc.		
	
SUBMIT	reader.c	and	makefile1.	
	
(B) Command	Line	Parser	and	Makefile	
	
WRITE	a	C	program	in	a	file	named	parser.c	with	this	functionality:	

1.	Print	the	prompt:	“MY	SHELL>”	
2.	Read	one	line	of	user	input	(a	single	command	line)	using	fgets()	
3.	Determine	the	strings	on	the	command	line	and	store	them	in	an	array,	i.e.,	
something	that	functions	like	a	char *argv[]	array.	Also	compute	the	value	
for	the	number	of	arguments	(this	includes	the	name	of	the	command),	i.e.,	
similar	to	int argc.	
4.	Print	the	argument	count	and	the	arguments	from	your	argument	array	to	
stdout	
5.	Repeat	(1)-(4)	until	an	EOF	condition	(ex:	the	user	types	Ctrl-D)	
	



WRITE	a	make	file	named	makefile2,	which	is	initially	a	copy	of	makefile1.	Add	a	
target	named	cmd_parser	that	builds	your	command	line	parser	with	gcc	and	with	
debugging	enabled;	the	name	of	the	executable	should	be	cmd_parser.	
	
TEST	your	program	with	several	different	commands,	numbers	of	arguments,	etc.		
	
SUBMIT	parser.c	and	makefile2.	
	
C)	Simple	Shell	and	Makefile	
	
WRITE	a	C	program	in	a	file	named	myShell.c	with	this	functionality:	
	

1.	Print	the	prompt:	“MY	SHELL>”	
2.	Read	one	line	of	user	input	(a	single	command	line)	using	fgets()	
3.	Determine	the	strings	on	the	command	line	and	put	them	into	an	array,	i.e.,	
something	that	functions	like	a	char *argv[]	array.	Also	compute	the	value	
for	the	number	of	arguments	(this	includes	the	name	of	the	command),	i.e.,	
similar	to	int argc	
4.	Create	a	child	process	using	fork	
5.	Call	execvp	to	load	the	command	input	in	(2)	into	the	child	process		and	
run	it	
6.	Call	wait	to	pause	the	parent	process	until	the	child	process	completes	
7.	Repeat	(1)-(7)	until	an	EOF	condition	(ex:	the	user	types	Ctrl-D)	

	
WRITE	a	make	file	named	makefile3,	which	is	initially	a	copy	of	makefile2.	Add	a	
target	named	my_shell	that	builds	your	shell	with	gcc	and	with	debugging	enabled;	
the	name	of	the	executable	should	be	my_shell.	
	
TEST	your	program	with	several	different	commands,	numbers	of	arguments,	etc.		
	
SUBMIT	myShell.c	and	makefile3.	
	
(C) Implementing	Background	(&)	
	
Copy	your	code	from	Part	C	to	a	new	file	named	myBetterShell.c,	with	the	following	
change:	

1.	Check	each	line	of	input	for	the	“&”	character	at	the	end	
2.	If	the	“&”	is	found,	run	the	child	process	in	the	background.		This	means	the	
prompt	should	return	immediately,	and	you	can	enter	a	new	command	
before	the	first	child	finishes.	
Hint:		see	waitpid()	

	
Part	2	–Simulator	Exercise	
	
Exercises	1-5	in	the	textbook	on	page	12	at	the	end	of	chapter	4.	


