
Introduction to Operating Systems

1. What is an Operating System?
2. Review of OS-Related Hardware



What is an Operating System?

Software that provides useful abstractions 
to application programs and effectively 
manages computer resources



Operating System Goals
Useful Abstractions

Hide complex details of the underlying hardware
Provide interfaces to applications and services
Simplify application writing

Effective Management of Resources
Deciding what to hide and what to expose
Defining suitable abstractions
Efficient, secure, robust mapping to hardware
Fair sharing among diverse applications and 

users



Operating System Structure

Hardware
CPU, Memory, Disk, Network, Display, Mouse etc

Operating System Kernel
Abstractions: Processes, Threads, Files, Sockets, etc

System Call Interface
Calls: fork(), exec(), read(), write(), kill(), getpid() etc 

Applications



The Resource Manager Role

Allocating resources to applications
time sharing resources
space sharing resources

Making efficient use of limited resources
improving utilization
minimizing overhead
improving throughput

Protection via enforcement of allocations



Enforcement by OS

The OS must protect itself from applications
It must protect applications from each other
It must prevent direct access to hardware
(Should it prevent direct access to hardware?)

But the OS is just software!
How can it do all this?



OS Needs Help from Hardware

The OS dilemma:
The OS is just a program!

When it is not running, it can�t do anything!
The OS�s goal is to run applications, not itself!

The OS needs help from the hardware in 
order to detect and prevent certain 
activities, and to enforce allocations



Brief Review of Hardware

Instruction sets define all that a CPU can do
They differ among CPU architectures
But all have load and store instructions to move 

data between memory and registers
Many instructions for comparing and combining 

values in registers

Examine the x86 instruction set 



Basic Anatomy of a CPU

Program Counter (PC)

23



Basic Anatomy of a CPU

Program Counter (PC)
Holds the memory address of the next instruction

24



Basic Anatomy of a CPU

Program Counter (PC)
Holds the memory address of the next instruction

Instruction Register

25



Basic Anatomy of a CPU

Program Counter (PC)
Holds the memory address of the next instruction

Instruction Register
Holds the instruction currently being executed

26



Basic Anatomy of a CPU

Program Counter (PC)
Holds the memory address of the next instruction

Instruction Register
holds the instruction currently being executed

General Purpose Registers

27



Basic Anatomy of a CPU

Program Counter (PC)
Holds the memory address of the next instruction

Instruction Register
holds the instruction currently being executed

General Purpose Registers
hold variables and temporary results

28



Basic Anatomy of a CPU

Program Counter (PC)
Holds the memory address of the next instruction

Instruction Register
holds the instruction currently being executed

General Purpose Registers
hold variables and temporary results

Arithmetic and Logic Unit (ALU)

29



Basic Anatomy of a CPU

Program Counter (PC)
Holds the memory address of the next instruction

Instruction Register
holds the instruction currently being executed

General Purpose Registers
hold variables and temporary results

Arithmetic and Logic Unit (ALU)
performs arithmetic functions and logic operations

30



Basic Anatomy of a CPU

Stack Pointer (SP)

31



Basic Anatomy of a CPU

Stack Pointer (SP)
holds memory address of a stack top
one frame for parameters & local variables of each 

active procedure

32



Basic Anatomy of a CPU

Stack Pointer (SP)
holds memory address of a stack top
one frame for parameters & local variables of each 

active procedure
Status Register

33



Basic Anatomy of a CPU

Stack Pointer (SP)
holds memory address of a stack top
one frame for parameters & local variables of each 

active procedure
Status Register

A word full of control flags/bits
Includes the mode bit to determine whether the 

CPU will execute privileged instructions

34



Program Execution

The Fetch/Decode/Execute cycle
- fetch next instruction pointed to by PC
- decode it to find its type and operands
- execute it
- repeat

At a fundamental level, this is all a CPU does -
- It does not know which program it is executing!

35



Fetch/Decode/Execute Cycle

PC IR

Reg. n

Reg. 1
…

ALU

CPU Memory

36



Key Concept: 
Limited Direct Execution
1. We want user programs to use the 

CPU/hardware directly
2. But we want the OS to still be in control 

and to prevent disasters

The tension between these two goals drives 
a lot of OS design



The OS is Just a Program!

The OS is just a sequence of instructions that 
the CPU will fetch/decode/execute

How can the OS cause application programs 
to run? 

How can applications cause the OS to run?

38



How Can an OS Run Applications?

39



How Can an OS Run Applications?

The OS must load the address of the 
application�s starting instruction into the PC

One way to do it:
- OS loads application (executable file) into memory
- OS loads the address of the app�s first instruction into the PC
- CPU fetches/decodes/executes the application�s instructions

40



But will the OS Ever Run Again?

Yes! If the application calls a system call, then 
control will transfer to the OS.

Examples: open(), read(), write(), getpid(), close(), 
exit()

System calls look like C function calls but they are 
much more 
complicatedsites.google.com/pdx.edu/bruceirvin

41



How Can the OS Regain Control?

What if an application doesn�t call any system 
calls and instead just hogs the CPU?
- OS needs something to interrupt the CPU and 

load OS instructions again
- interrupts can be generated from a timer device
- OS must register a future timer interrupt before 

handing control of the CPU over to an application
- When the timer interrupt goes off the hardware 

starts running the OS at a pre-specified location 
called an interrupt handler

42



What is an Interrupt?

Interrupt:
Hardware event that loads an address of an 

instruction into the PC

Interrupt handler:
An instruction sequence that has been associated 

with an interrupt
Address of first instruction is registered with the 

interrupt hardware by filling in an interrupt 
vector

43



Interrupts

Interrupts are a form of event-based 
programming
Also known as reactive programming

Interrupt handlers are invoked in response to 
hardware events
Invocation order is not known a priori
Their execution is interleaved with existing 

execution sequences, unless prevented by 
disabling interrupts

44



Can Applications Cheat the Timer?

Can the application disable the future timer interrupt so that the 
OS can not take control back from it?

45



Can Applications Cheat the Timer?

Enabling and disabling interrupts must by a privileged 
instructions that are not executable by applications

ISAs – Instruction Set Architecture – typical defines many 
privileged instructions that can only be used when system is 
in privileged mode.

The CPU knows whether or not to allow privileged instructions 
based on the value of the mode bit in the status register

Privileged instructions are only executed if the mode bit is set
- attempted execution in non-privileged mode generally 
causes an interrupt (trap) to occur 

46



Can Applications Set the Mode Bit?

How is the mode bit set?
Via a privileged instruction?
If so, is this instruction privileged?

47



Can Applications Set the Mode Bit?

The mode bit is set via interrupts, traps, faults, and 
exceptions

These are all hardware events that cause the address 
of a previously registered instruction to be loaded 
into the PC
This instruction is the start of an interrupt/trap/fault handler 

that is part of the OS!

48



Are There Other Ways to Cheat?

What stops the running application from 
modifying the interrupt vector, or the 
handlers associated with various interrupts, 
traps and faults?

- eg. modifying the timer interrupt handler to 
jump control back to the application?

49



What Stops Applications From 
Modifying the Interrupt Vector?

50



What Stops Applications From 
Modifying the Interrupt Vector?

Doing so requires privileged instructions!

51



What Stops Applications From 
Modifying the OS?

i.e, modifying the interrupt, trap, fault 
handler instructions in memory?

52



What Stops Applications From 
Modifying the OS?

Memory protection!
Certain areas of memory are off-limits 

unless the correct values are loaded into 
memory protection registers
... and accessing those registers requires use of 

privileged instructions
... they can only be changed if the mode bit is 

set
53



How Can the OS Maintain Control?
Why must the OS fill in the interrupt vectors 

before handing control over to applications
Why must it register a future timer 

interrupt?
Why must it set memory protections?
Why must it clear the mode bit?
What if it forgets to do one of the above?

54



How Can Applications Invoke 
the OS?

Why not just set PC to an OS instruction 
address and transfer control that way?

How would the mode bit get set?

55



How Can Applications Invoke 
the OS?
Special trap instruction causes a kind of interrupt

- changes PC to point to a predetermined OS entry 
point instruction

- simultaneously sets the mode bit
- CPU is now running in privileged mode

Application calls a library procedure that includes the 
appropriate trap instruction
ID of system call is passed in a register (%eax)
fetch/decode/execute cycle begins at a pre-specified 
OS entry point called a system call handler 56



Trap instruction

On Intel x86 chips, the “trap” instruction is called “int”

(grrrr….)

57



Are Traps Interrupts?

Traps, like interrupts, are hardware events
But traps are synchronous whereas interrupts 

are asynchronous
traps are caused by the executing program rather 
than by a device that is external to the CPU



Interrupts, Traps, and Faults

Synchronous? Intentional? Error?

Interrupt No No No

Trap Yes Yes No

Fault Yes No Yes



Key Concepts: processes

• user mode vs. kernel mode
• Trap (Intel INT)
• System call
• Trap table
• Return from trap (Intel 

IRET)
• Limited Direct Execution
• Timer interrupt
• Context Switch



Review Questions

Why do we need a timer device?
Why do we need an interrupt mechanism?
Why do we need two instruction types and a mode bit?
Why are system calls different from procedure calls?
How are system calls different from interrupts?
Why is memory protection necessary?

61


