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The	Single	Core	Era	#5:	Key	Architecture	Advances	

• Instruction	Level	Parallelism	(ILP)
• Pipelining
• Branch	Prediction
• Multiple	Instruction	Issue
• The	Memory	Hierarchy
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Pipelining
The Insight

n Formulate instruction execution as sequence of simple steps
n Use same general form for all instructions
n Design hardware so that a different instruction can be at each step 

concurrently
n 1. Instr 1 at stage 1
n 2. Instr 1 at stage 2, Instr 2 at stage 1
n 3. Instr 1 at stage 3, Instr 2 at stage 2, Instr 3 at stage 1
n … 
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Real-World Pipelines: Car Washes

Idea
n Divide process into 

independent stages
n Move each car through stages 

in sequence
n At any given time, multiple 

cars being processed

Sequential Parallel

Pipelined
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Computational Example

System
n Computation requires total of 300 picoseconds
n Additional 20 picoseconds to save result in register
n Must have clock cycle of at least 320 ps

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS
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3-Way Pipelined Version

System
n Divide combinational logic into 3 blocks of 100 ps each
n Can begin new operation as soon as previous one passes 

through stage A.
l Begin new operation every 120 ps

n Overall latency increases
l 360 ps from start to finish

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps
Throughput = 8.33 GIPS
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Pipeline Diagrams
Unpipelined

n Cannot start new operation until previous one completes

3-Way Pipelined

n Up to 3 operations in process simultaneously

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3
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Limitations: Nonuniform Delays

n Throughput limited by slowest stage
n Other stages sit idle for much of the time
n Challenging to partition system into balanced stages

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps
Throughput = 5.88 GIPS

Comb.
logic
A

Time

OP1
OP2
OP3

A B C
A B C

A B C
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Limitations: Register Overhead

n As try to deepen pipeline, overhead of loading registers 
becomes more significant

n Percentage of clock cycle spent loading register:
l 1-stage pipeline: 6.25% 
l 3-stage pipeline: 16.67% 
l 6-stage pipeline: 28.57%

n High speeds of modern processor designs obtained through 
very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps
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Pipelining Challenges:  Data 
Dependencies

System
n Each operation depends on result from preceding one

Clock

Combinational
logic

R
e
g

Time

OP1
OP2
OP3
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Pipelining Challenges: Data Hazards

n Result does not feed back around in time for next operation
n Pipelining has changed behavior of system

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C
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Data Dependencies in Processors

n Result from one instruction used as operand for another
l Read-after-write (RAW) dependency

n Very common in actual programs
n Must make sure our pipeline handles these properly

l Get correct results
l Minimize performance impact

1 irmovl $50, %eax

2 addl %eax ,  %ebx

3 mrmovl 100( %ebx ),  %edx
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Pipeline Stages
Fetch

n Select current PC
n Read instruction
n Compute incremented PC

Decode
n Read program registers

Execute
n Operate ALU

Memory
n Read or write data memory

Write Back
n Update register file



– 15 – CS:APP2e

Predicting the 
PC

n Start fetch of new instruction after current one has completed 
fetch stage
l Not enough time to reliably determine next instruction

n Guess which instruction will follow
l Recover if prediction was incorrect
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Example:  Prediction Strategy
Instructions that Don’t Transfer Control

n Predict next PC to be valP
n Always reliable

Call and Unconditional Jumps
n Predict next PC to be valC (destination)
n Always reliable

Conditional Jumps
n Predict next PC to be valC (destination)
n Only correct if branch is taken

l Typically right 60% of time

Return Instruction
n Don’t try to predict
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Pipeline Summary
Concept

n Break instruction execution into 5 stages
n Run instructions through in pipelined mode

Limitations
n Can’t handle dependencies between instructions when 

instructions follow too closely
n Data dependencies

l One instruction writes register, later one reads it
n Control dependency

l Instruction sets PC in way that pipeline did not predict correctly
l Mispredicted branch and return
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Superscalar	Processor
¢ Definition: A superscalar processor can issue and 

execute multiple instructions in one cycle. The 
instructions are retrieved from a sequential instruction 
stream and are usually scheduled dynamically.

¢ Benefit: without programming effort, superscalar 
processor can take advantage of the instruction level 
parallelism that most programs have

¢ Most CPUs since about 1998 are superscalar.
¢ Intel: since Pentium Pro
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Superscaler example:		Nehalem	CPU
¢ Multiple	instructions	can	execute	in	parallel

1	load,	with	address	computation
1	store,	with	address	computation
2	simple	integer	(one	may	be	branch)
1	complex	integer	(multiply/divide)
1	FP	Multiply
1	FP	Add

¢ Some	instructions	take	>	1	cycle,	but	can	be	pipelined
Instruction Latency Cycles/Issue
Load	/	Store 4 1
Integer	Multiply 3 1
Integer/Long	Divide 11--21 11--21
Single/Double	FP	Multiply 4/5 1
Single/Double	FP	Add 3 1
Single/Double	FP	Divide 10--23 10--23
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Loop	Unrolling

¢ Perform	2x	more	useful	work	per	iteration

void unroll2a_combine(vec_ptr v, data_t *dest)
{

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {

x = x OP d[i];
}
*dest = x;

}
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Effect	of	Loop	Unrolling

¢ Helps	integer	multiply
§ below	latency	bound
§ Compiler	does	clever	optimization

¢ Others	don’t	improve.	Why?
§ Still	sequential	dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Unroll 2x 2.0 1.5 3.0 5.0
Latency 
Bound

1.0 3.0 3.0 5.0
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What	About	Branches?
¢ Challenge

§ Instruction	Control	Unit	must	work	well	ahead	of	Execution	Unit
to	generate	enough	operations	to	keep	EU	busy

§When	encounters	conditional	branch,	cannot	reliably	determine	where	to	
continue	fetching

80489f3: movl   $0x1,%ecx
80489f8: xorl   %edx,%edx
80489fa: cmpl   %esi,%edx
80489fc: jnl    8048a25
80489fe: movl   %esi,%esi
8048a00: imull  (%eax,%edx,4),%ecx

Executing

How	to	continue?
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Branch	Outcomes
§When	encounter	conditional	branch,	cannot	determine	where	to	continue	
fetching
§ Branch	Taken:	Transfer	control	to	branch	target
§ Branch	Not-Taken:	Continue	with	next	instruction	in	sequence

§ Cannot	resolve	until	outcome	determined	by	branch/integer	unit

80489f3: movl   $0x1,%ecx
80489f8: xorl   %edx,%edx
80489fa: cmpl   %esi,%edx
80489fc: jnl    8048a25
80489fe: movl   %esi,%esi
8048a00: imull  (%eax,%edx,4),%ecx

8048a25: cmpl   %edi,%edx
8048a27: jl     8048a20
8048a29: movl   0xc(%ebp),%eax
8048a2c: leal   0xffffffe8(%ebp),%esp
8048a2f: movl   %ecx,(%eax)

Branch	Taken

Branch	Not-Taken
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Branch	Prediction
¢ Idea

§ Guess	which	way	branch	will	go
§ Begin	executing	instructions	at	predicted	position

§ But	don’t	actually	modify	register	or	memory	data

80489f3: movl   $0x1,%ecx
80489f8: xorl   %edx,%edx
80489fa: cmpl   %esi,%edx
80489fc: jnl    8048a25
. . .

8048a25: cmpl   %edi,%edx
8048a27: jl     8048a20
8048a29: movl   0xc(%ebp),%eax
8048a2c: leal   0xffffffe8(%ebp),%esp
8048a2f: movl   %ecx,(%eax)

Predict	Taken

Begin
Execution
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Branch	Prediction	Through	Loop
80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1

80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1

80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1

i =	98

i =	99

i =	100

Predict	Taken	(OK)

Predict	Taken
(Oops)

80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1

i =	101

Assume	
vector	length	=	100

Read	
invalid	
location

Executed

Fetched
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Branch	Misprediction	Invalidation
80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1

80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1

80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1

i =	98

i =	99

i =	100

Predict	Taken	(OK)

Predict	Taken	(Oops)

80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx i =	101

Invalidate

Assume	
vector	length	=	100
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Branch	Misprediction	Recovery

¢ Performance	Cost
§ Multiple	clock	cycles	on	modern	processor
§ Can	be	a	major	performance	limiter

80488b1: movl   (%ecx,%edx,4),%eax
80488b4: addl   %eax,(%edi)
80488b6: incl   %edx
80488b7: cmpl   %esi,%edx
80488b9: jl     80488b1
80488bb: leal   0xffffffe8(%ebp),%esp
80488be: popl   %ebx
80488bf: popl   %esi
80488c0: popl   %edi

i =	99
Definitely	not	taken


