
The	Underlying	Architecture

PSU	CS	532
Prof.	Karen	L.	Karavanic

Acknowledgments

• This	presentation	includes	or	is	motivated	by	
materials	developed	by	others:
– 15-213:	Introduction	to	Computer	Systems,	2010

• Randy	Bryant	and	Dave	O’Hallaron
– Kathy	Yelick,	UC-Berkeley
– Andrew	S.	Tanenbaum,	Modern	Operating	
Systems

– Remzi and	Andrea	C.	Arpaci-Dusseau,	Operating	
Systems:		Three	Easy	Pieces

– Jonathan	Walpole,	Bruce	Irvin	Portland	State	
University

CS	532	Winter	2020 2

The	Single	Core	Era	#5:	Key	Architecture	Advances	

• Instruction	Level	Parallelism	(ILP)
• Pipelining
• Branch	Prediction
• Multiple	Instruction	Issue
• The	Memory	Hierarchy

CS	532	Winter	2020 3

– 4 – CS:APP2e

Pipelining
The Insight

n Formulate instruction execution as sequence of simple steps
n Use same general form for all instructions
n Design hardware so that a different instruction can be at each step

concurrently
n 1. Instr 1 at stage 1
n 2. Instr 1 at stage 2, Instr 2 at stage 1
n 3. Instr 1 at stage 3, Instr 2 at stage 2, Instr 3 at stage 1
n …

– 5 – CS:APP2e

Real-World Pipelines: Car Washes

Idea
n Divide process into

independent stages
n Move each car through stages

in sequence
n At any given time, multiple

cars being processed

Sequential Parallel

Pipelined

– 6 – CS:APP2e

Computational Example

System
n Computation requires total of 300 picoseconds
n Additional 20 picoseconds to save result in register
n Must have clock cycle of at least 320 ps

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS

– 7 – CS:APP2e

3-Way Pipelined Version

System
n Divide combinational logic into 3 blocks of 100 ps each
n Can begin new operation as soon as previous one passes

through stage A.
l Begin new operation every 120 ps

n Overall latency increases
l 360 ps from start to finish

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps
Throughput = 8.33 GIPS

– 8 – CS:APP2e

Pipeline Diagrams
Unpipelined

n Cannot start new operation until previous one completes

3-Way Pipelined

n Up to 3 operations in process simultaneously

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

– 9 – CS:APP2e

Limitations: Nonuniform Delays

n Throughput limited by slowest stage
n Other stages sit idle for much of the time
n Challenging to partition system into balanced stages

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps
Throughput = 5.88 GIPS

Comb.
logic
A

Time

OP1
OP2
OP3

A B C
A B C

A B C

– 10 – CS:APP2e

Limitations: Register Overhead

n As try to deepen pipeline, overhead of loading registers
becomes more significant

n Percentage of clock cycle spent loading register:
l 1-stage pipeline: 6.25%
l 3-stage pipeline: 16.67%
l 6-stage pipeline: 28.57%

n High speeds of modern processor designs obtained through
very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

– 11 – CS:APP2e

Pipelining Challenges: Data
Dependencies

System
n Each operation depends on result from preceding one

Clock

Combinational
logic

R
e
g

Time

OP1
OP2
OP3

– 12 – CS:APP2e

Pipelining Challenges: Data Hazards

n Result does not feed back around in time for next operation
n Pipelining has changed behavior of system

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

– 13 – CS:APP2e

Data Dependencies in Processors

n Result from one instruction used as operand for another
l Read-after-write (RAW) dependency

n Very common in actual programs
n Must make sure our pipeline handles these properly

l Get correct results
l Minimize performance impact

1 irmovl $50, %eax

2 addl %eax , %ebx

3 mrmovl 100(%ebx), %edx

– 14 – CS:APP2e

Pipeline Stages
Fetch

n Select current PC
n Read instruction
n Compute incremented PC

Decode
n Read program registers

Execute
n Operate ALU

Memory
n Read or write data memory

Write Back
n Update register file

– 15 – CS:APP2e

Predicting the
PC

n Start fetch of new instruction after current one has completed
fetch stage
l Not enough time to reliably determine next instruction

n Guess which instruction will follow
l Recover if prediction was incorrect

– 16 – CS:APP2e

Example: Prediction Strategy
Instructions that Don’t Transfer Control

n Predict next PC to be valP
n Always reliable

Call and Unconditional Jumps
n Predict next PC to be valC (destination)
n Always reliable

Conditional Jumps
n Predict next PC to be valC (destination)
n Only correct if branch is taken

l Typically right 60% of time

Return Instruction
n Don’t try to predict

– 17 – CS:APP2e

Pipeline Summary
Concept

n Break instruction execution into 5 stages
n Run instructions through in pipelined mode

Limitations
n Can’t handle dependencies between instructions when

instructions follow too closely
n Data dependencies

l One instruction writes register, later one reads it
n Control dependency

l Instruction sets PC in way that pipeline did not predict correctly
l Mispredicted branch and return

Carnegie Mellon

18

Superscalar	Processor
¢ Definition: A superscalar processor can issue and

execute multiple instructions in one cycle. The
instructions are retrieved from a sequential instruction
stream and are usually scheduled dynamically.

¢ Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have

¢ Most CPUs since about 1998 are superscalar.
¢ Intel: since Pentium Pro

Carnegie Mellon

19

Superscaler example:		Nehalem	CPU
¢ Multiple	instructions	can	execute	in	parallel

1	load,	with	address	computation
1	store,	with	address	computation
2	simple	integer	(one	may	be	branch)
1	complex	integer	(multiply/divide)
1	FP	Multiply
1	FP	Add

¢ Some	instructions	take	>	1	cycle,	but	can	be	pipelined
Instruction Latency Cycles/Issue
Load	/	Store 4 1
Integer	Multiply 3 1
Integer/Long	Divide 11--21 11--21
Single/Double	FP	Multiply 4/5 1
Single/Double	FP	Add 3 1
Single/Double	FP	Divide 10--23 10--23

Carnegie Mellon

20

Loop	Unrolling

¢ Perform	2x	more	useful	work	per	iteration

void unroll2a_combine(vec_ptr v, data_t *dest)
{

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {

x = x OP d[i];
}
*dest = x;

}

Carnegie Mellon

21

Effect	of	Loop	Unrolling

¢ Helps	integer	multiply
§ below	latency	bound
§ Compiler	does	clever	optimization

¢ Others	don’t	improve.	Why?
§ Still	sequential	dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Unroll 2x 2.0 1.5 3.0 5.0
Latency
Bound

1.0 3.0 3.0 5.0

Carnegie Mellon

22

What	About	Branches?
¢ Challenge

§ Instruction	Control	Unit	must	work	well	ahead	of	Execution	Unit
to	generate	enough	operations	to	keep	EU	busy

§When	encounters	conditional	branch,	cannot	reliably	determine	where	to	
continue	fetching

80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
80489fe: movl %esi,%esi
8048a00: imull (%eax,%edx,4),%ecx

Executing

How	to	continue?

Carnegie Mellon

23

Branch	Outcomes
§When	encounter	conditional	branch,	cannot	determine	where	to	continue	
fetching
§ Branch	Taken:	Transfer	control	to	branch	target
§ Branch	Not-Taken:	Continue	with	next	instruction	in	sequence

§ Cannot	resolve	until	outcome	determined	by	branch/integer	unit

80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
80489fe: movl %esi,%esi
8048a00: imull (%eax,%edx,4),%ecx

8048a25: cmpl %edi,%edx
8048a27: jl 8048a20
8048a29: movl 0xc(%ebp),%eax
8048a2c: leal 0xffffffe8(%ebp),%esp
8048a2f: movl %ecx,(%eax)

Branch	Taken

Branch	Not-Taken

Carnegie Mellon

24

Branch	Prediction
¢ Idea

§ Guess	which	way	branch	will	go
§ Begin	executing	instructions	at	predicted	position

§ But	don’t	actually	modify	register	or	memory	data

80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
. . .

8048a25: cmpl %edi,%edx
8048a27: jl 8048a20
8048a29: movl 0xc(%ebp),%eax
8048a2c: leal 0xffffffe8(%ebp),%esp
8048a2f: movl %ecx,(%eax)

Predict	Taken

Begin
Execution

Carnegie Mellon

25

Branch	Prediction	Through	Loop
80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

i =	98

i =	99

i =	100

Predict	Taken	(OK)

Predict	Taken
(Oops)

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

i =	101

Assume	
vector	length	=	100

Read	
invalid	
location

Executed

Fetched

Carnegie Mellon

26

Branch	Misprediction	Invalidation
80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

i =	98

i =	99

i =	100

Predict	Taken	(OK)

Predict	Taken	(Oops)

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx i =	101

Invalidate

Assume	
vector	length	=	100

Carnegie Mellon

27

Branch	Misprediction	Recovery

¢ Performance	Cost
§ Multiple	clock	cycles	on	modern	processor
§ Can	be	a	major	performance	limiter

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1
80488bb: leal 0xffffffe8(%ebp),%esp
80488be: popl %ebx
80488bf: popl %esi
80488c0: popl %edi

i =	99
Definitely	not	taken

