
CS532 Operating System Foundations
Bruce Irvin

Karen Karavanic

Winter 2020

General Questions about I/O

Why care about I/O?
How can we integrate I/O into a computer?
Any general mechanisms?
How can we make I/O efficient?

Basic Assumption

I/O is slow
That is, operations are much slower than CPU
Multiple orders of magnitude slower
But it can be capable of great throughput

Basic Assumption

I/O is slow
That is, operations are much slower than CPU
Multiple orders of magnitude slower
But it can be capable of great throughput

Physics and Cost

Faster bus == shorter bus
Shorter bus == fewer devices plugged in
Faster bus == expensive

So we build a hierarchical structure to allow
for varied tradeoffs

Intel Kaby Lake (Z270 Chipset, 2017)

Simplified I/O Device

Programmed I/O

Interrupts

while() polling can be slow
Solution: interrupts

Interrupt: asynch hardware-level signal
Overlap computation with I/O operations
Allows OS to schedule another runnable

process while waiting for I/O

PIO sometimes better than Interrupts

Issue: sometimes I/O devices are very fast
Issue: sometimes too many interrupts can be

detrimental

Solution: poll for a little while, then block

(example: network packet bursts)

Coalescing of Interrupts

Some I/O devices have buffers and are
therefore able to queue up results of
multiple I/O operations.

In this case the device can raise just one
coalesced interrupt

CPU needs to know to handle multiple I/O
operations per interrupt.

After the Interrupt…

After the interrupt, the CPU still needs to
move data from device to memory.

Data movement can be slow and waste
valuable CPU cycles

Is there a better way?

DMA: Direct Memory Access

Allow the I/O device to directly write/read
data to/from memory.

All data transferred at I/O speeds
Then raise an interrupt when finished
Meanwhile, CPU is free to do other work

DMA might be orchestrated by DMA
Controller, I/O chip or even a device itself.

How to Communicate w Devices?

Two Common Approaches

I/O instructions
• e.g., Intel’s in and out instructions
• privileged

Memory-mapped I/O
• Specific memory locations are used as

communication channels for devices

Gazillions of Devices

• Disks, Graphics Cards, Displays,
Keyboards, NICs, SSDs, etc.

• Many manufacturers
• Many versions
• Many configurations

How do we deal with the complexity?

Device Drivers
Goals

• Allow for variety of devices
• Keep the OS sane and consistent

Device Driver
• Bit of software that encapsulates

management of specific device
• Must follow OS-defined interface
• Must be installed

File System Stack (Linux)

Device Drivers
• Take up >70% of kernel code

• Even when very few devices are
actually installed

• Often responsible for many system
crashes

• Drive kernel developers insane
• Sometimes hide too many device-

specific details

Hard Disk Drives (HDDs)
• Still the most common type of

storage device
• Quirky physical device
• Inspired wonderful CS algorithms
• De riguer for OS courses
• The rise of Solid State Storage

Devices (SSDs)

Incredible SSDs

SSD characteristics

Random reads and writes perform better than
HDDs

Flash-based SSDs

No mechanical/moving parts, just transistors
Quiet, small
Unlike DRAM, it retains data when off
NAND-based Flash
Invented: Fujio Masuoka at Toshiba (1984)
Has some interesting properties…

Flash-based SSDs properties

To write a given chunk (flash page), you first
must erase a bigger chunk (!)

Writing a flash memory location repeatedly
causes that location to wear out (!)

SSDs: SLC, MLC, TLC, QLC

Each cell is a transistor
SLC – one bit per transistor, fastest, least

dense, most expensive
MLC – two bits per transistor
TLC – three bits per transistor (2017)
QLC – most capacity density, cheaper (2018)

SSDs: leakage

All SSDs store data in electrical charges
Slowly leak over time if left w/o power
Drives lose data after 1-2 years (depending

on ambient temperature)
Not a good solution yet for data archival

SSDs: banks and planes

Plane – collection of banks
Bank – contains many blocks of 128+K
Block – contains pages of 4K each

SSDs: basic operations

Read a page: Takes 10s of usecs, same for
any page at any time

Erase a block: sets every bit in the block to 1.
so first make a copy! Takes msecs

Program a page: change some bits to 0.
Takes 100s of usecs. Must erase block first!

SSDs: example update

Whoops!

We lost the data for pages 1, 2 and 3!

Solution: when writing any page must first
copy the other pages to memory.

Write cost: 30usecs to copy, 1000 usecs to
flash, 100usecs to program

So updates ~100x slower than reads

SSDs: latency comparison

Flashing is not just expensive…

It also wears out the transistors over time

When designing systems with SSDs the
performance and reliability of writing is
usually the central focus.

Researchers have developed ways to mitigate
some of these issues

SSD: wear out – why ?

When a flash block is erased and
programmed it slowly accrues a little bit of
extra charge.

Over time, as that charge builds up, it
becomes increasingly difficult to
differentiate between a 0 and a 1.

At some point the block becomes unusable.
How soon? 2010: 10K cycles for MLC, 100K

cycles for SLC. Today, reportedly better.

SSD: wait, there’s more!

Disturbance: reads and especially re-
programs can sometimes cause bits in
neighboring pages to become flipped.

Similar to “row hammer” attacks in memory

Building an SSD from Flash Chips

Building an SSD from Flash Chips

Host Interface Logic: allows reuse of existing
disk-based OS software and bus
interconnects

On board memory gives scratch space for
reprogramming

Flash Controller implements various
techniques to optimize the operations

Flash Controller Techniques

Parallel banks: used for redundancy

Spread: even/level the wear across all banks

Minimize disturbance: program pages within
an erased block in order, from low page to
high page.

Log Structuring of Blocks

As writes arrive, just keep them in order that
they arrived, regardless of their logical
location.

e.g. 100:0, 101:1, 2000:2, 2001:3
SSD pages 00,01,02,03

Must keep a map of logical:physical locations

How is the map persisted

Two techniques:

1. Write redundant map recovery information
into the pages (cheaper)

2. Use asynchronous logging and
checkpointing (faster)

Two problems with Log Structuring

Needs a map
Overwrites of data lead to holes and garbage

collection
Some devices implement periodic de-

fragmentation to coalesce data and do wear
leveling

New algorithms developed each year.

SSDs: Summary

Not as quirky as HDDs
But still quirky
Much research/development has improved

them, but much remains to be done.
The technology is changing rapidly!

