CPU Scheduling

CS 532 Winter 2020
© 2020 Karavanic

Process State Model

Key Concept:
 Separate Mechanism from Policy

Mechanisms: process, process switch
Policy: process scheduling. Which process should run next?

Separating policy from mechanism allows us to make the mechanism solid while allowing varying policy choices. (modularity)

CPU Scheduling Criteria

CPU Utilization

- how busy is the CPU?

Throughput

- how many jobs finished/unit time?

Turnaround Time

- how long from job submission to job termination?

Response Time

- how long does it take to get a response

Missed deadlines

Broad Classes of Scheduler

Priority-based?

- Processes have priorities
- Priorities can be assigned statically or dynamically

Preemptive?

- Processes can be switched at any time

Example Scheduling Policies

First-Come, First Served (FIFO)
Shortest Job First (non-preemptive)
Shortest Job First (with preemption)
Round-Robin Scheduling
Priority Scheduling
Real-Time Scheduling

How can we evaluate Scheduling Algorithms?

- Analytic Models
- Parameters: information about the typical workload such as distribution of job length, interarrival interval
- Determine: throughput, average queue length, average wait time, etc.
- Benefits: Can explore different workloads
- Simulation
- Given a file with a specific workload (captured from a real system, or created)
- Determine throughput, average queue length, average wait time, etc.
- Benefits: Fast (see homework 2)

First-Come, First-Served (FIFO)

Start jobs in the order they arrive (FIFO queue) Run each job until completion

First-Come, First-Served (FIFO)

Process	Arrival Time	Processing Time
\square	1	0

First-Come, First-Served (FIFO)

Process	Arrival Time	Processing Time	Delay	Turnaround Time
\square	0	3		
\square	2	6		
3	4	4		
\square	6	5		
\square	8	2		

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

Process	Arrival Time	Processing Time	Delay	Turnaround Time
1	0	3		
2	2	6		
3	4	4		
4	6	5		
5	8	2		
		\qquad		
0	510	15	20	14

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

Delay

Turnaround

Time
\end{tabular}

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

First-Come, First-Served (FIFO)

Shortest Job First

\square Select the job with the shortest (expected) running time
\square Non-Preemptive

Shortest Job First

Shortest Job First

Process

| Arrival |
| :---: | :---: | :---: |
| Time | | Processing |
| :---: |
| Time |\quad Delay | Turnaround |
| :---: |
| Time |

Shortest Job First

Process	Arrival Time	Processing Time	Delay		naround Time
1	0	3			
2	2	6			
3	4	4			
4	6	5			
5	8	2			
0	510	15	20		30

Shortest Job First

Process	Arrival Time	Processing Time	Delay	Turnaround Time
1	0	3		
2	2	6		
3	4	4		
4	6	5		
5	8	2		
				$ـ$
0	510	15	20	31

Shortest Job First

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad

Delay

Turnaround

Time
\end{tabular}

Shortest Job First

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad Delay

Turnaround

Time
\end{tabular}

Shortest Job First

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad Delay

Turnaround

Time
\end{tabular}

Shortest Job First

Shortest Job First

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad Delay

Turnaround

Time
\end{tabular}

Shortest Job First

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad Delay

Turnaround

Time

\hline 1

2
\end{tabular}

Shortest Job First

Shortest Job First

Shortest Job First

Shortest Job First

Process	Arrival Time	Processing Time	Delay	Turnaround Time
1	0	3	0	
2	2	6	1	
3	4	4	7	
4	6	5	9	
5	8	2	1	
\square		\mid		
-	$\frac{1}{1}$	-1		
0	5	15	20	41

Shortest Job First

Process	Arrival Time	Processing Time	Delay	Turnaround Time
$\square 1$	0	3	0	3
2	2	6	1	7
3	4	4	7	11
4	6	5	9	14
5	8	2	1	3
-				
0	5	15	20	42

Shortest Remaining Time

 Preemptive version of SJF

Shortest Remaining Time

Process	Arrival Time	Processing Time	Delay		naround Time
1	0	3			
2	2	6			
3	4	4			
4	6	5			
$\square 5$	8	2			
				+ـــــــــ	
0	510	15	20		44

Shortest Remaining Time

Process	Arrival Time	Processing Time	Delay	Turnaround Time
1	0	3		
2	2	6		
3	4	4		
4	6	5		
5	8	2		
0	510	15	20	45

Shortest Remaining Time

Process	Arrival Time	Processing Time	Delay	Turnaround Time
1	0	3		
2	2	6		
3	4	4		
4	6	5		
5	8	2		
0	510	15	20	46

Shortest Remaining Time

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad

Delay

Turnaround

Time
\end{tabular}

Shortest Remaining Time

Process	Arrival Time	Processing Time	Delay	Turnaround Time
1	0	3		
2	2	6		
3	4	4		
4	6	5		
5	8	2		
0	510	15	20	48

Shortest Remaining Time

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad

Delay

Turnaround

Time
\end{tabular}

Shortest Remaining Time

Process \begin{tabular}{c}
Arrival

Time

\quad

Processing

Time

\quad Delay

Turnaround

Time
\end{tabular}

Shortest Remaining Time

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad

Delay

Turnaround

Time
\end{tabular}

Shortest Remaining Time

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad

Delay

Turnaround

Time
\end{tabular}

Shortest Remaining Time

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad

Delay

Turnaround

Time
\end{tabular}

Shortest Remaining Time

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

\quad

Delay

Turnaround

Time
\end{tabular}

Shortest Remaining Time

Shortest Remaining Time

Process
Arrival

Time \begin{tabular}{c}
Processing

Time

 Delay

Turnaround

Time

\hline 1

2
\end{tabular}

Shortest Remaining Time

Shortest Remaining Time

Process	Arrival Time	Processing Time	Delay	Turnaround Time
$\square 1$	0	3	0	3
2	2	6	7	13
3	4	4	0	4
- 4	6	5	9	14
$\square 5$	8	2	0	2
\square				
(1)				

Round-Robin Scheduling

Goal: Enable interactivity
Limit the amount of CPU that a thread can have at one time.

Time quantum
Amount of time the OS gives a thread before intervention
Sometimes called the "time slice"
Typically: 1 to 100 ms
Not necessarily the same as the timer interrupt frequency!

Round-Robin Scheduling

Process	Arrival Time	Processing Time
1	0	3
2	2	6
3	4	4
4	6	5
$\square 5$	8	2

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	0	3
2	2	6
\square	4	4
\square	6	5
\square	8	8

Ready List:

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right]\)| |
| :---: |
| 2 |

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right]\)| |
| :---: |
| 2 |

Ready List:

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right]\)| |
| :---: |
| 2 |

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	1	0

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	0	3
2	2	6
\square	4	4
\square	6	5
\square	8	8

Ready List:

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right] 3\)| \square |
| :---: |
| 2 |

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	0	3
2	2	6
\square	4	4
\square	6	5
\square	8	8

Ready List:

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right] 3\)| \square |
| :---: |
| 2 |

Ready List:

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right] 3\)| \square |
| :---: |
| 2 |

Ready List:

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right] 3\)| \square |
| :---: |
| 2 |

Ready List:

\uparrow

Round-Robin Scheduling

\(\left.$$
\begin{array}{ccc}\text { Process } & \begin{array}{c}\text { Arrival } \\
\text { Time }\end{array} & \begin{array}{c}\text { Processing } \\
\text { Time }\end{array}
$$

\hline \square \& 1 \& 0\end{array}\right] 3\)| \square |
| :---: |
| 2 |

Ready List:

Round-Robin Scheduling

Process	Arrival Time	Processing Time
\square	0	3
2	2	6
\square	4	4
4	6	5
\square	8	2

Round-Robin Scheduling

Process	Arrival			
Time	Processing Time	Delay		Time
\square	0	3	1	4
1	2	6	10	16
2	4	4	9	13
3	6	5	9	14
\square	8	2	5	7

Round-Robin Scheduling

Effectiveness of round-robin depends on

- The number of threads, and
- The size of the time quantum.

Large \# of threads means that the time between scheduling of a single thread increases

- Slow responses

Larger time quantum means that the time between the scheduling of a single thread also increases

- Slow responses

Smaller time quantum means higher processing rates but also more overhead!

General Purpose Schedulers

Priority Scheduling

Assign a priority (number) to each thread Schedule threads based on their priority Higher priority threads get more CPU time Starvation is possible!

Managing priorities
Can use "nice" to voluntarily reduce your priority Scheduler can periodically adjust a process' priority

- Prevents starvation of a lower priority process
- Can improve performance of I/O-bound processes by basing priority on fraction of last quantum used

Multi-Level Queue Scheduling

Multiple queues, each with its own priority
Equivalently: each priority level has its own ready queue Round-robin scheduling is used within each queue Simplest approach uses statically assigned priorities

High priority

Low priority

Multi-Level Feedback Scheduling

Problem: with fixed priorities I/O-bound processes are disadvantaged

Can we fix this with dynamic priorities?

Multi-Level Feedback Scheduling

Solution: Let the amount of CPU that a thread used in the last quantum determine its scheduling priority for the next

Expired time quantum \rightarrow decrease priority Unexpired time quantum \rightarrow increase priority

Rationale: if a thread didn't use all of its time (because it blocked for I/O) the system owes it some more CPU time

Also, if a thread is compute-bound, raising its priority risks it starving the other threads

Multi-Level Feedback Scheduling

N priority levels, round-robin scheduling within a level Should Quanta increase as priority decreases? Are high priority threads more likely to be interactive? What stops starvation?

Proportional Share Scheduling

The amount of CPU a thread gets is a separate concern from how urgently it must run

Latency and throughput are distinct scheduling concerns

Lottery Scheduling

A kind of proportional share scheduling by chance Scheduler gives each thread some lottery tickets
To select the next process to run...

- The scheduler randomly selects a lottery number
- The winning process gets to run

Example \quad Thread A gets 50 tickets
Thread B gets 15 tickets
Thread C gets 35 tickets
There are 100 tickets outstanding

Lottery Scheduling

A kind of proportional share scheduling
Scheduler gives each thread some lottery tickets.
To select the next process to run...

- The scheduler randomly selects a lottery number
- The winning process gets to run

Example \quad Thread A gets 50 tickets $\rightarrow 50 \%$ of CPU
Thread B gets 15 tickets $\rightarrow 15 \%$ of CPU
Thread C gets 35 tickets $\rightarrow 35 \%$ of CPU
There are 100 tickets outstanding

Proportion-Period Scheduling

No need for randomization
Threads should be able to get throughput and latency guarantees
Necessary in time-sensitive applications

