
Files: Organization

Each file has a name
Each file has a parent directory
Each directory has a parent directory
/ is the ”root” or top-most ancestor



Files: key abstractions

Directory
• Functions much like a file

• Has a name, metadata
• is contained within a parent Directory

• But contains specific contents
• List of contained files and directories



/

usru dev

myid

README

mydir



Files: Naming

Absolute: /u/myid/mydir/README
Relative: README
Special directories: ‘.’, ‘..’, ‘~’

Illegal characters: ‘/’, NULL
Avoid these: ‘>’, ‘<‘, ‘|’, ’&’, etc. 
Length: 255 characters (bytes?)
Filename must be unique within directory



File System API (unix)
read(fd,…), write(fd,…)

lseek(fd,…)  // for random access

struct file {  // xv6 file structure

int ref;

char readable;

char writable;

sruct inode *ip;

uint off;  // offset into the file

};

(POSIX)



Directory APIs

Back in the olden days (pre 1990) Unix 
provided only one type of file system.

A Directory was just a File
With a very specific, well-known file format
So you could just use standard Unix file I/O 

syscalls: open(), read(), write(), close()

But then more file system implementations
ext*, ZFS, NTFS, XFS, LFS, jfs, Btrfs, etc.



Linux Directory APIs

The new fs implementations use complex 
directory file formats.

So in the slightly less olden days Linux 
introduced opendir(), readdir(), writedir(), 
etc.

But for large systems this was inefficient. 
Readdir() retrieved one directory entry at a 
time. Many OS context switches for large 
directories.

No batching à inefficient



Linux Directory APIs

getents() – retrieve many entries from a 
given directory

Then they rewrote readdir(), etc. as Clib
functions on top of getents(). 

So existing software works, just better

Lessons: batching good. well-defined APIs 
good



File and Directory Permissions
Each file/directory has a list of permission bits:

The first bit indicates the type of the entity: file, directory, link, 
special file, named pipe, something else

The other bits indicate permissions: octal: 644
Permissions are in three groups: owner, group, other

Each bit indicates “read”, “write” or “execute” permission

-rw-r--r--



Directory needs execute bit?

The original unix file system introduced several 
hacks to save space and time, and one of them 
was to overload the meaning of “execute”

For a Directory, the execute permission actually 
means “can chdir() to this directory” permission.

There are more hacks, see chmod() man page for 
more information about sticky bits and setuid bit.
setuid bits and sticky bits)



File System ACLs
ACL: Access Control List

• A listing of which users have which permissions
• Much flexible than simple unix permissions
• More complex to implement
• Existed in some 1960s research systems
• Later introduced by HP into HPUX (90s)
• Eventually standardized in POSIX (1997)
• Now supported in most OS distributions
• Essential for Role-Based Administration



Mounting File Systems
Goal: utilize multiple storage devices
Goal: maintain a coherent, abstract naming system

Use mkfs() to make a new file system on a device
Then use mount() to insert it into a specific place in 

the file system name hierarchy
And unmount() when done.



Quick Quiz
What is a File? Directory?
What command do you use to list files in a directory?
What system call retrieves entries from an open directory?
What’s the difference between 
drwx------ and -rwx------ ?
What command is used to remove a file?
What is a file descriptor?
When might fsync() not be good enough?
What does the unlink() system call do?



What Is a File?
Files can be structured or unstructured

- Unstructured: just a sequence of bytes
- Structured: a sequence or tree of typed records

In Unix-based operating systems a file is an unstructured 
sequence of bytes
- similar to memory



File Structure

qasd

Sequence
of bytes

Sequence
of records

Tree
of records



Unix/Linux File Extensions
Even though files are just a sequence of bytes, programs can 

impose structure on them, by convention
- Files with a certain standard structure imposed can be 

identified using an extension to their name
- Application programs may look for specific file extensions 

to indicate the file�s type
- But as far as Unix/Linux is concerned its just a sequence 

of bytes



Typical File Extensions



Executable Files
Executable files are special

- The OS must understand the format of 
executable files in order to execute 
programs

- The exec system call needs this 
information
- Exec puts program and data in process 

address space



Executable File Format

An executable file An archive



File Attributes
Various meta-data needs to be associated with files

- Owner
- Creation time
- Access permissions / protection
- Size etc

This meta-data is called the file attributes
- Maintained in file system data structures for each file
- Stored in the I-node in Unix file systems



Memory-Mapped Files
Conventional file I/O

- Use system calls (e.g., open, read, write, ...) to move 
data from disk to memory

Observation
- Data gets moved between disk and memory all the time 

without system calls
- Pages moved to/from PAGEFILE by VM system

- Do we really need to incur system call overhead for file 
I/O?



Memory-Mapped Files
Why not �map� files into the virtual address space

- Place the file in the �virtual� address space
- Each byte in a file has a virtual address

To read the value of a byte in the file:
- Just load that byte�s virtual address

- Calculated from the starting virtual address of the file and the offset 
of the byte in the file

- Kernel will fault in pages from disk when needed

To write values to the file:
- Just store bytes to the right memory locations

Open & Close syscalls ® Map & Unmap syscalls



Memory-Mapped Files
Stack

Text
&

Data

File on Disk



Memory-Mapped Files
Stack

Text
&

Data

File on Disk

Map syscall is made



Memory-Mapped Files
Stack

Text
&

Data

File on Disk

Map syscall is made



Memory-Mapped Files
Stack

Text
&

Data

File on Disk

Map syscall is made



Memory-Mapped Files
Stack

Text
&

Data

File on Disk

Map syscall is made

Demand Paging:
Only read pages when needed



File System Consistency
Invariant:

Each disk block must be
in a file (or directory), or
on the free list

What inconsistent states can arise? Why?
Old solution: fsck (file system checker)
Newer solution: Journaling



File System Consistency
Inconsistent States:



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)

- Some block is on free list and is in some file



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)

- Some block is on free list and is in some file

- Some block is on the free list more than once



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)

- Some block is on free list and is in some file

- Some block is on the free list more than once

- Some block is in more than one file



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)
Add it to the free list.

- Some block is on free list and is in some file

- Some block is on the free list more than once

- Some block is in more than one file



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)
Add it to the free list.

- Some block is on free list and is in some file
Remove it from the free list.

- Some block is on the free list more than once

- Some block is in more than one file



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)
Add it to the free list.

- Some block is on free list and is in some file
Remove it from the free list.

- Some block is on the free list more than once
(Can�t happen when using a bitmap for free blocks.)
Fix the free list so the block appears only once.

- Some block is in more than one file



File System Consistency
Inconsistent States:

- Some block is not in a file or on free list (�missing block�)
Add it to the free list.

- Some block is on free list and is in some file
Remove it from the free list.

- Some block is on the free list more than once
(Can�t happen when using a bitmap for free blocks.)
Fix the free list so the block appears only once.

- Some block is in more than one file
Allocate another block.
Copy the block.
Put each block in each file.
Notify the user that one file may contain data from another file.



File System Consistency
Invariant (for Unix):
�The reference count in each i-node must be equal to the 

number of hard links to the file.�

A
B
C

X
Y

F
G
C

D1: D2: D3:

File



File System Consistency
Problems:

- Reference count is too large

- Reference count is too small



File System Consistency
Problems:

- Reference count is too large
- The �rm� command will delete a hard link
- When the count becomes zero, the blocks are freed
- Permanently allocated; blocks can never be reused

- Reference count is too small



File System Consistency
Problems:

- Reference count is too large
- The �rm� command will delete a hard link
- When the count becomes zero, the blocks are freed
- Permanently allocated; blocks can never be reused

- Reference count is too small
- When links are removed, the count will go to zero too soon!
- The blocks will be added to the free list, even though the file 

is still in some directory!



File System Consistency
Problems:

- Reference count is too large
- The �rm� command will delete a hard link
- When the count becomes zero, the blocks are freed
- Permanently allocated; blocks can never be reused

- Reference count is too small
- When links are removed, the count will go to zero too soon!
- The blocks will be added to the free list, even though the file 

is still in some directory!

Solution:
- Correct the reference count!


