
File Systems Part 1

Karen L. Karavanic
Portland State University CS 532

Winter 2020

What is a File?

• [To the User] A linear array of bytes
• [To the OS] A sequence of blocks
• A portable abstraction over the details of physical

storage of persistent data
• A virtualization (“myData.txt”) of the physical storage

(HDD, SDD, tape, etc)
• Is “file” the only approach?
– No
– Examples: records, persistent objects, relational

database – table rows

Karavanic	CS532 2

Key Unix Concept: Everything is a File
• Goal: Develop an abstraction for stored (persistent)

data: The File
• Create a simple API for interacting with files
• Even better: use this API for as many things as

possible
– Ex.s: Directories, devices, pipes, processes
(/proc), disks (/dev/disk*),
non-things (/dev/null)

– Common Operations: Read, write
• Needed to manage read and write: Create, Delete,

Bookmark

Karavanic	CS532 3

Key Unix Concept: Everything is a File

Note: The POSIX file interface <> the C stdio library
interface

• The C library is a higher level set of functions
implemented with POSIX calls

• The C library library uses a FILE* to identify each file

Karavanic	CS532 4

OS Management of Files

• OS must manage conflicts/sharing across processes
• Keep a count of how many processes are accessing a

file:
– open, close
– Example of Readers/Writers problem

• Assign a unique name to each file: Directory structure
• Supply a token for use in system calls:
– The file descriptor
• int fd1 = open(argv[1], O_RDONLY);
• int retval = close(fd1);

Karavanic	CS532 5

OS Management of Files

• Bookkeeping: File Metadata
– See stat structure (text p. 14 Chapter 39)
– Access this via stat() system call

• System Resilience: Synchronizing writes
– fsync() forces data to be on device before program

continues
– fcntl (F_FULLFSYNC) forces device to actually

save the data not just hold it in device memory

Karavanic	CS532 6

OS Management of Files

• The Open File Table
– Each file descriptor is a separate entry, even if they

refer to the same file:
fd1 = open("file", O RDONLY);
fd2 = open("file", O RDONLY);

– Child process inherits the open file entries of the
parent process

– dup() and dup2() used to duplicate existing file
descriptors
• Example: redirection

Karavanic	CS532 7

OS Management of Files
Redirection: cat > my.file

fd = open(“my.file”, CREATE_FLAGS, CREATE_MODE);
if (fd == -1) {

Printf (“failed to open file \n”);
Return 1;

}
if (dup2(fd, STDOUT_FILENO) == -1) {

Printf (“failed to redirect stdout \n”);
Return 1;

}
if (close(fd) == -1) {

Printf (“failed to close the file \n”);
Return 1;

}

Karavanic	CS532 8

OS Management of Files

Redirection
• File descriptor table before redirection:

• File descriptor table after redirection:

Karavanic	CS532 9

0 standard	input

1 standard	output

2 standard	error

0 standard	input

1 write access	my.file

2 standard	error

