
File System Implementation Issues

• What data/metadata is stored in the device?
• How is that information arranged?
• How is that information used by the OS during 

open(), read(), write(), close(), etc.
• What happens upon crash or outage?
• What details are left to the device itself?



File System Implementation Issues

• What data/metadata is stored in the device?
• How is that information arranged?
• How is that information used by the OS during 

open(), read(), write(), close(), etc.
• What happens upon crash or outage?
• What details are left to the device itself?

It all depends on the fs implementation



Disk Space Management

How to keep track of allocated vs free blocks
What strategy to use for allocating free 

blocks to a file



Keeping Track of Free Blocks
Approach #1:

- Keep a bitmap
- 1 bit per disk block

Approach #2
- Keep a free list



Keeping Track of Free Blocks
Approach #1:

- Keep a bitmap
- 1 bit per disk block

Example:
- 1 KB block size
- 16 GB Disk Þ 16M blocks = 224 blocks

Bitmap size = 224 bits Þ 2048 blocks
- 1/8192 space lost to bitmap

Approach #2
- Keep a free list



List of Free Disk Blocks
Linked list of free blocks
Each list block on disk holds

- A bunch of addresses of free blocks
- Address of next block in the list

null



Free List of Disk Blocks
Two kinds of blocks:

- Free Blocks
- Blocks containing pointers to free blocks

Always keep one block of pointers in memory for fast allocation 
and freeing
- Ideally this block will be partially full



Comparison: Free List vs Bitmap

Goal: keep all the blocks in one file close together



Comparison: Free List vs Bitmap

Goal: keep all the blocks in one file close together

Free Lists:
- Free blocks could be anywhere
- Allocation comes from (almost) random location



Comparison: Free List vs Bitmap

Goal: keep all the blocks in one file close together

Free Lists:
- Free blocks could be anywhere
- Allocation comes from (almost) random location

Bitmap:
- Much easier to find a free block �close to� a given position
- Bitmap implementation:

- Easier to keep entire bitmap in memory



Allocation Strategies

Determining which blocks make up a file:
• Contiguous allocation
• Linked allocation
• FAT file system
• Unix I-nodes



Contiguous Allocation

After deleting D and F...



Contiguous Allocation

After deleting D and F...



Contiguous Allocation
Advantages:

- Simple to implement (Need only starting sector & length 
of file)

- Performance is good (... for sequential reading)



Contiguous Allocation
Advantages:

- Simple to implement (Need only starting sector & length of file)
- Performance is good (... for sequential reading)

Disadvantages:
- After deletions, disk becomes fragmented
- Will need periodic compaction (time-consuming)
- Will need to manage free lists
- If new file put at end of disk... no problem
- If new file is put into a �hole� we must know maximum file 

size ... at the time it is created!



Contiguous Allocation
Good for Write-Once storage devices

- All file sizes are known in advance
- Files are never deleted

- e.g., backup storage devices



Alternative: Linked List Allocation

Each file is a sequence of blocks
First word in each block contains the number of the next block



Linked List Allocation

Random access into the file is slow!



File Allocation Table (FAT)
Keep the link information in a table in memory
One entry per block on the disk
Each entry contains the address of the �next� block

- End of file marker (-1)
- A special value (-2) indicates the block is free



File Allocation Table (FAT)
Random access...

- Searching the linked list is fast because it is all in memory

Directory entry needs only one number:
- The starting block number

Disadvantage:
- Entire table must be in memory all at once!
- This is a problem for large capacity file systems



File Allocation Table (FAT)
Disadvantage:

- Entire table must be in memory all at once!
- Example:

200 GB = device capacity
1 KB = block size
4 bytes = FAT entry size
800 MB of memory used to store the FAT



I-nodes
Each I-node (�index-node�) is a structure containing info about the file

- Attributes and location of the blocks containing the file

Other
attributes

Blocks
on disk

I-node



I-nodes

Indexed by
virtual block
number

Other
attributes

Disk
Blocks

I-node



I-nodes

Enough space
for 10 pointers
plus indirect
pointers

Disk
Blocks

Other
attributes

I-node



The UNIX I-node


