
An	Introduction	to	the	Memory	
Hierarchy

CS	532
Karen	L.	Karavanic

Includes	material	from	Hennessy	&	Patterson,	Bryant	&	
O’Hallaron

The	Single	Core	Era
The	Memory	Hierarchy

• Why	have	a	hierarchy	of	memory?
• How	does	caching	work?
• How	does	caching	affect	performance	?

CS	532	Winter	2020 2

Locality of	Reference	(review)

• Programs	tend	to	use	data	and	instructions	
with	addresses	near	or	equal	to	those	they	
have	recently	used

• Temporal locality:		recently	referenced	
addresses	are	likely	be	referenced	again	soon
– Ex:	Loops

• Spatial locality:	if	an	address	is	referenced,	
nearby addresses	are	likely	to	be	referenced	
soon
– Ex:	reference	successive	elements	of	an	array

CS	532	Winter	2020 3

Carnegie Mellon

4

Locality	Example

¢ Data	references
§ Reference	array	elements	in	succession	

(stride-1	reference	pattern).
§ Reference	variable	sum each	iteration.

¢ Instruction	references
§ Reference	instructions	in	sequence.
§ Cycle	through	loop	repeatedly.	

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial	locality
Temporal	locality

Spatial	locality
Temporal	locality

Carnegie Mellon

5

Cache	Memories
¢ Cache	memories	are	small,	fast	SRAM-based	memories	

managed	automatically	in	hardware.	
§ Hold	frequently	accessed	blocks	of	main	memory

¢ CPU	looks	first	for	data	in	caches	(e.g.,	L1,	L2,	and	L3),	
then	in	main	memory.

¢ Typical	single	core	system	structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memories

From	Bryant	&	O’Hallaron,	Computer	Systems

Caches

• Cache:		A	smaller,	faster	storage	device	used	to	
hold	temporary	copies	of	data	fetched	from	a	
larger,	slower	storage	device

• Memory	hierarchies
– For	each	k,	the	faster,	smaller	device	at	level	k serves	
as	a	cache	for	the	larger,	slower	device	at	level	k	+	1

– Programs	tend	to	access	data	at	level	k	more	than	the	
data	at	k	+	1	(why?)	

• Goals:
– Hide	latency	of	storage	devices
– Decrease	storage	cost

CS	532	Winter	2020 6

Carnegie Mellon

7

Intel	Core	i7	Cache	Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1	i-cache	and	d-cache:

32	KB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MB,	16-way,
Access:	30-40	cycles

Block	size:	64	bytes	for	
all	caches.	

From	Bryant	&	O’Hallaron,	Computer	Systems

Carnegie Mellon

8

General	Cache	Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger,	slower,	cheaper	memory
viewed	as	partitioned	into	“blocks”

Data	is	copied	in	block-sized	transfer	
units	(called	a	block or	line)	

Smaller,	faster,	more	expensive
memory	caches	a		subset	of
the	blocks

4

4

4

10

10

10

Modified	From	Bryant	&	O’Hallaron,	Computer	Systems

Carnegie Mellon

9

General	Cache	Concepts:	Cache	Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Address	within	block	b	is	
referencedRequest:	14

14
Block	b	is	in	cache:
Cache	Hit!

Modified	From	Bryant	&	O’Hallaron,	Computer	Systems

Carnegie Mellon

10

General	Cache	Concepts:	Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Address	within	block	b	is	
referencedRequest:	12

Block	b	is	not	in	cache:
Miss!

Block	b	is	fetched	from
memoryRequest:	12

12

12

12

Block	b	is	stored	in	cache

Miss	rate	=	misses/references
Miss	penalty	=	time	to	fetch

From	Bryant	&	O’Hallaron,	Computer	Systems

Questions
• Why are cache lines larger than one int or one
float?

• We have seen L1, L2, and L3 cache. What does
LLC stand for?

• In 1000 memory references there are 40 misses
in the first-level cache and 20 misses in the
second level cache. What are the miss rates?

• How might cache performance be affected as
we increase the value of x in this code?

sum = 0;
for (i = 0; i < n; i = i + x)
sum += a[i];
return sum;

CS	532	Winter	2020 11

Cache	Design:	Key	Questions
• Block Placement:
•Given a cache with n lines, where can a particular block
e.g. block address=12, be placed?

• Block Identification:
– How do we find a particular block?

• Block Replacement:
– Which block to evict and replace on a miss?

• Write Strategy:
– What happens on a write?

CS	532	Winter	2020 12

0 1 2 3 4 5 6 7Line	#

Block	Placement:	12
• Fully Associative: anywhere

•Direct mapped: 12 mod 8 = 4

•n-way Set Associative: 12 mod n = Set 0; Set size = 8/n

CS	532	Winter	2020 13

0 1 2 3 4 5 6 7Line	#

0 1 2 3 4 5 6 7Line	#

0 1 2 3 4 5 6 7Line	#

Block	Identification

• Fully	Associative:	Check	every	cache	line	in	the	
cache	for	a	match	using	its	tag:
– Address:	address	of	currently	resident	block
– Valid	bit:	is	there	valid	data?

• Direct	Mapped:	Compute	the	one	cache	line	
from	the	address	and	check	for	match

• Set	Associative:	Compute	the	Set,	check	every	
cache	line	in	the	set	for	a	match
• Index:	set	number

CS	532	Winter	2020 14

Block	Replacement

• Direct	Mapped:	if	the	one	eligible	line	is	in	
use,	evict	that	block

• Fully	or	Set	Associative:	
– Random
• Inexpensive

– Least	Recently	Used	(LRU)
• Temporal	and	some	Spatial	Locality
• Expensive	->	Use	Approximation

– First	In	First	Out	(FIFO)
• Captures	some	Temporal	Locality
• Less	Expensive

CS	532	Winter	2020 15

Write	Strategy

• Locate	block	within	the	cache
• Write	through	OR	Write	back
• Write	through	– data	written	to	the	cache	AND	
memory	simultaneously
– Easier	to	implement
– Keeps	cache	consistent	with	lower	levels	of	hierarchy

• Write	back	– Data	written	ONLY	to	the	cache.		
Data	is	written	to	memory	when	the	block	is	
replaced	in	/	evicted	from	the	cache
– Dirty	bit:	set	on	write	to	signal	need	to	write	back	to	
memory	on	replacement

– Reduces	memory	traffic

CS	532	Winter	2020 16

Performance	Implications

• Average	memory	access	time	
=	Hit	time	+	Miss	Rate	*	Miss	penalty

• Reducing	the	Miss	Rate
– Larger	block	size,	larger	cache	size,	larger	
associativity

• Reducing	the	Miss	Penalty
–Multilevel	caches,	giving	reads	priority	over	writes

• Reducing	the	time	to	Hit	in	the	Cache
– Avoid	address	translation	when	indexing	the	
cache

CS	532	Winter	2020 17

Reducing	the	Miss	Rate	– Miss	Types

• Compulsory	miss
– First	time	a	block	is	accessed	(“cold-start	misses”)

• Capacity	miss
– Occurs	when	the	set	of	cache	blocks	needed	is	
larger	than	the	cache.		Replacement	->	extra	
misses

• Conflict	miss
– Too	many	blocks	map	to	same	set	(“collision	
miss”)	->	replacement	->	extra	misses

CS	532	Winter	2020 18

