Carnegie Mellon

Its All Os and 1s
Part 1: bits, bytes, integers

Karen L. Karavanic
CS 201 Spring 2019

This lecture Includes materials from the textbook authors:

15-213: Introduction to Computer Systems
2"dand 3™ Lectures, Sep. 3 and Sep. 8, 2015

Randal E. Bryant and David R. O’Hallaron
It is @ modified version of the original slides.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Everything is bits

m Each bitisOor1

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)

= .. and represent and manipulate numbers, sets, strings, etc...

m Why bits? Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

— 0 & < 1 s — 0 —
1.1V —
/M
0.9V — /
0.2V~
0.0V —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Encoding Byte Values

m Byte = 8 bits
= Binary 000000002 to 11111111>
= Decimal: 010 to 25510

= Hexadecimal 0016 to FF1s

= Base 16 number representation

= Use characters ‘0O’ to ‘9’ and ‘A’ to ‘F’ 0110
)) 0111

= Write FA1D37B1s in C as 1000
— OxFA1D37B 1001

— Oxfald37b 1011

e
olel el ol 2| ol ©]®| S| oy U] s (w(Nv R o
|—l
o
|—l
o

= EO|Q|H(|0l u|alw| N ko

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double = - 10/16

pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or

= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&[0 1 | 10 1
O0(0 O O[O0 1
110 1 111 1

Not Exclusive-Or (Xor)

= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AO 1
0|1 O[O0 1
110 111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
" QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 =~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}
" a=1ifj] EA

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0, 6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Bit-Level Operations in C

m Operations &, |, ~, A Available in C

= Apply to any “integral” data type
« long, int, short, char, unsigned
= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~0Px41 = OxBE
= ~01000001: —» 101111102
= ~Qx00 — OxFF
= ~00000000: - 111111112
= 0x69 & 0Ox55 = 0x41
» 01101001 & 01010101: — 01000001:
= Ox69 | Ox55 = 0Ox7D

- 011010012 | 010101012 — 011111012

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &, |, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1
= Early termination

m Examples (char data type)
= 10x41 - 0Ox00
= 19x00 - 0Ox01
= 119x41 - 0x01

0x09 && Ox55 = 0x01
0x69 || Ox55 = 0x01

p & *p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Contrast: Logic Operationsin C

m Contrast to Logical Operators
= &, I, !

= View 0 as “Fa

= Anythi

= Alwa

= Early

m Exampl
= 10x41

10x00

110x41

0x09 && Ox55 = 0x01
0x69 || Ox55 = 0x01

p & *p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Shift Operations
m Left Shift: x << y Argument x| 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> y
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

= Throw away extra bits on right Argument x| 10100010

= |ogical shift << 3 00010000
= Fill with 0’s on left

= Arithmetic shift
= Replicate most significant bit on left

Log.>> 2 | 00101000

Arith. >> 2| 11101000

m Undefined Behavior

= Shift amount < 0 or = word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Today: Bits, Bytes, and Integers

-
C
m Integers
= Representation: unsigned and signed
|
| |
|
|
C
-

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—1) w—2 .
B2UX) = Y x;-2 B2T(X) = —x,,2" "+ > x -2
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y 15213| C4 93] 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768

Bryant and O’Hallaron, Computer Systems: A ngmner’s Perspective, Third Ed1|5~213 '15213 17

Numeric Ranges

m Unsigned Values

Carnegie Mellon

m Two’s Complement Values

[] 1 -
UMin 0 = TMin _ _ow-1
000..0 100...0
[— w_
UMax "1 = TMax = 2%1-1
111...1 011..1
m Other Values
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 -1 FFF FF| 11111111 11111111
0 0| 00 00| 00000000 0OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = Hinclude <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Unsignhed & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 —7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14)
1111 15 -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

20

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
O
m Integers
o
= Conversion, casting
o
0
o
O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Mapping Between Signed & Unsigned

Two’s Complement m— Unsigned
X » T2B ~ B2U > UX

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement
Uux »| U2B [—{ B2T > X
X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 — Tul— 5
0110 6 6
0111 7 —1U2T[— 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 _ 3
0100 4 44— 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 p 10
1011 -5 +/-16 11
1100 —4 12
1101 -3 13
1110 2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Relation between Signhed & Unsigned

Two’s Complement m— Unsigned

X > T2B > B2U > UX
X

Maintain Same Bit Pattern

w—1 0
Ux |+|+|+ o0 +|+]+

x [IEE eeo T+[+[*

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Conversion Visualized

m 2’s Comp. > Unsigned
= QOrdering Inversion UMax
" Negative — Big Positive

_ . TMax + 1 | unsigned
TMax ® ® TMax Range

2’s Complement
Range

T\L’

_ TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= |mplicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Casting Surprises

m Expression Evaluation

" |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Summary
Casting Sighed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Today: Bits, Bytes, and Integers

L]
]
m Integers
o
o
= Expanding, truncating
o
o
]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Signh Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

" X' = X1 Xpe1r Xuye1 » Xz 11 X
L]
k copies of MSB < w >
o 00
X ' o000 o0 0
< k > € W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s| ctive, Third Edition 31

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213(FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m Cautomatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
" Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Today: Bits, Bytes, and Integers

]
L]
m Integers
n
o
o
= Addition, negation, multiplication, shifting
L]
]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Unsigned Addition

Operands: w bits U 0o

+ Vv oo 0
True Sum: w+1 bits U+ —
Discard Carry: w bits ~ UAdd, (u , v) X

m Standard Addition Function

" |gnores carry output

m Implements Modular Arithmetic
s = UAdd,u,v) = u+v mod2%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Two’s Complement Addition

Operands: w bits 7] 00
+ v o 00

True Sum: w+1 bits
u-+v N
Discard Carry: w bits TAdd, (u , v) v o0

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s ==

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

TAdd Overflow

m Functionality
®" True sum requires w+1l
bits
= Drop off MSB

" Treat remaining bits as
2’s comp. integer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0111..

0 100...

0 000...

1011..

1 000...

Carnegie Mellon

True Sum
2W_1 —
PosO
> TAdd Result
2w-1-1 + T 011..1
0 -+ T 000..0
—2w-1 < - 100..0
ow L NegOver

37

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w—-2wtl +1]
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (—2w1)*(2w1-1) = —22w=2 4 2w-1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Resultrange: x * y < (—2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
" js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Unsigned Multiplication in C

u o 00
Operands: w bits
* o000
V
True Product: 2*w bits U * V °o0 ° oo
UMult (u , v) XX

Discard w bits: w bits

m Standard Multiplication Function

= |gnores high order w bits

m Implements Modular Arithmetic
UMult (u,v)= u -v mod2¥

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Signed Multiplication in C

u o 00
Operands: w bits
* o000
1%
True Product: 2*w bits U ° V ¢ o0 v o
TMult, (u , v) XX

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= |Lower bits are the same

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

l/t o 00

Operands: w bits

* 2k O] eee |O]1]|0]| eee |O|O
True Product: w+k bits u - 2k ® o0 0] eee |0O|O
Discard k bits: w bits UMult, (u , 2%) 0o 0] eee [0]O

TMult, (u , 2¥)
m Examples

" u<< 3 == u * 8

" (u <K b)) - (u KK 3J)== u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Unsighed Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= u > kgives Lu / 2¢]
= Uses logical shift

k
u 0o oo Binary Point
Operands:
l 2k Ol eee |0]l110]| eee |00
Division: u/2k 10l e 10JO 20° f{ 20°
Result: | u/2k | [0l _e<< o]0
Division | Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x >> 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 [59.4257813 59 00 3B| 00000000 00111011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
]
m Integers

o

0

o

= Summary
]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Arithmetic: Basic Rules

m Addition:

" Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

" Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Why Should | Use Unsignhed?

m Don’t use without understanding implications
= Easy to make mistakes

unsigned i;
for (1 = cnt-2; i >= 0; i--)
al[i] += a[i+1l];

= Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Counting Down with Unsigned

m Proper way to use unsigned as loop index

unsigned 1i;
for (1 = cnt-2; 1 < cnt; i--)

af[i] += a[i+l];
m See Robert Seacord, Secure Coding in C and C++
= (CStandard guarantees that unsigned addition will behave like modular

arithmetic
= 0—1-2 UMax

m Even better
size t 1;
for (1 = ecnt-2; 1 < cnt; i--)
af[i] += a[i+l];
" Datatype size t defined as unsigned value with length = word size
= Code will work even if ent = UMax

" What if ent is sighed and < 0?
46

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets
= Logical right shift, no sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Today: Bits, Bytes, and Integers

H
H
m Integers

m Representations in memory, pointers, strings

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Byte-Oriented Memory Organization

00. QQ.

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= |n reality, it’s not, but can think of it that way
= An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Machine Words

m Any given computer has a “Word Size”
= Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" |ncreasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 10*8

" Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit Bvies Addr
m Addresses Specify Byte Words Words =Y '
Locations 0000
] . Addr 0001
= Address of first byte in word =
. . 0000 0002
= Addresses of successive words differ Addr 0003
by 4 (32-bit) or 8 (64-bit) =
0000 0004
Addr 0005
0004 0006
0007
0008
Adr 0009
0008 Addr 0010
= 0011
0008 0012
Adr 0013
0012 0014
0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double = - 10/16

pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01l 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Decimal: 15213

Representing Integers |Binary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
1A32, x86-64 Sun
I1A32 x86-64 Sun
6D |«
3B |«
00 |«
00 |e

int B = -15213;
I1A32, x86-64 Sun

T~

Two’s complement representation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t len) {
size t i;
for (i = 0; 1 < len; i++)
printf ("%p\t0x%.2x\n",start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X : Print Hexadecimal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((polnter) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun 1A32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

Bryant and O H&aron, Computer Systems: A Programmer’s Perspective, Third E ition 58

Carnegie Mellon

Representing Strings

char S[o] = "18213";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format 1A32 Sun
= Standard 7-bit encoding of character set 31 |« > 31
= Character “0” has code 0x30 38 | »| 38
— Digit i has code 0x30+i 32 | | 32
= String should be null-terminated 31 | S 31
= Final character=0 33 | o 33
m Compatibility 00 | 1 00

= Byte ordering not an issue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Integer C Puzzles

+ x <0 pe ((x*¥2) < 0)
c ux >= 0
cx &7 =17 e (x<<30) < O
* ux > -1
* X >y e -x < -y
* X * x >= 0
Initialization "x>06& y>0 ™ x+y>0
- c x>0 e -x <=0
int x = foo() ; Cx <=0 B —x >= 0
int y = bar(); ¢ (x]|-x)>>31 == -1
unsigned ux = x; * ux >> 3 == ux/8
unsigned uy = y; ©x >> 3 == x/8

x & (x-1) '=0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

