
The	Underlying	Architecture

Spring	2019
Prof.	Karen	Karavanic

Acknowledgments

• This	presentation	includes	materials	
developed	by	others:
– 15-213:	Introduction	to	Computer	Systems,	2010

• Randy	Bryant	and	Dave	O’Hallaron

– Kathy	Yelick,	UC-Berkeley

©	2019	Karen	L.	Karavanic

Outline
• The	Single	Core	Era	(->	2006)
• The	Multicore	Era	(2006	->)

– 5.	Why	Multicore?
– 6.	Manycore

©	2019	Karen	L.	Karavanic

The	Single	Core	Era
Key	Hardware	Advances	

• Instruction	Level	Parallelism	(ILP)
• Pipelining
• Branch	Prediction
• Multiple	Instruction	Issue
• The	Memory	Hierarchy

©	2019	Karen	L.	Karavanic

– 5 – CS:APP2e

Pipelining
The Insight

n Formulate instruction execution as sequence of simple steps
n Use same general form for all instructions
n Design hardware so that a different instruction can be at each step

concurrently
n 1. Instr 1 at stage 1
n 2. Instr 1 at stage 2, Instr 2 at stage 1
n 3. Instr 1 at stage 3, Instr 2 at stage 2, Instr 3 at stage 1
n …

– 6 – CS:APP2e

Real-World Pipelines: Car Washes

Idea
n Divide process into

independent stages
n Move each car through stages

in sequence
n At any given time, multiple

cars being processed

Sequential Parallel

Pipelined

– 7 – CS:APP2e

Computational Example

System
n Computation requires total of 300 picoseconds
n Additional 20 picoseconds to save result in register
n Must have clock cycle of at least 320 ps

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS

– 8 – CS:APP2e

3-Way Pipelined Version

System
n Divide combinational logic into 3 blocks of 100 ps each
n Can begin new operation as soon as previous one passes

through stage A.
l Begin new operation every 120 ps

n Overall latency increases
l 360 ps from start to finish

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps
Throughput = 8.33 GIPS

– 9 – CS:APP2e

Pipeline Diagrams
Unpipelined

n Cannot start new operation until previous one completes

3-Way Pipelined

n Up to 3 operations in process simultaneously

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

– 10 – CS:APP2e

Limitations: Nonuniform Delays

n Throughput limited by slowest stage
n Other stages sit idle for much of the time
n Challenging to partition system into balanced stages

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps
Throughput = 5.88 GIPS

Comb.
logic
A

Time

OP1
OP2
OP3

A B C
A B C

A B C

– 11 – CS:APP2e

Limitations: Register Overhead

n As try to deepen pipeline, overhead of loading registers
becomes more significant

n Percentage of clock cycle spent loading register:
l 1-stage pipeline: 6.25%
l 3-stage pipeline: 16.67%
l 6-stage pipeline: 28.57%

n High speeds of modern processor designs obtained through
very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

– 12 – CS:APP2e

Pipelining Challenges: Data
Dependencies

System
n Each operation depends on result from preceding one

Clock

Combinational
logic

R
e
g

Time

OP1
OP2
OP3

– 13 – CS:APP2e

Pipelining Challenges: Data Hazards

n Result does not feed back around in time for next operation
n Pipelining has changed behavior of system

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

– 14 – CS:APP2e

Data Dependencies in Processors

n Result from one instruction used as operand for another
l Read-after-write (RAW) dependency

n Very common in actual programs
n Must make sure our pipeline handles these properly

l Get correct results
l Minimize performance impact

1 irmovl $50, %eax

2 addl %eax , %ebx

3 mrmovl 100(%ebx), %edx

– 15 – CS:APP2e

Pipeline Stages
Fetch

n Select current PC
n Read instruction
n Compute incremented PC

Decode
n Read program registers

Execute
n Operate ALU

Memory
n Read or write data memory

Write Back
n Update register file

– 16 – CS:APP2e

Predicting the
PC

n Start fetch of new instruction after current one has completed
fetch stage
l Not enough time to reliably determine next instruction

n Guess which instruction will follow
l Recover if prediction was incorrect

– 17 – CS:APP2e

Example: Prediction Strategy
Instructions that Don’t Transfer Control

n Predict next PC to be valP
n Always reliable

Call and Unconditional Jumps
n Predict next PC to be valC (destination)
n Always reliable

Conditional Jumps
n Predict next PC to be valC (destination)
n Only correct if branch is taken

l Typically right 60% of time

Return Instruction
n Don’t try to predict

– 18 – CS:APP2e

Pipeline Summary
Concept

n Break instruction execution into 5 stages
n Run instructions through in pipelined mode

Limitations
n Can’t handle dependencies between instructions when

instructions follow too closely
n Data dependencies

l One instruction writes register, later one reads it
n Control dependency

l Instruction sets PC in way that pipeline did not predict correctly
l Mispredicted branch and return

Carnegie Mellon

19

Superscalar	Processor
¢ Definition: A superscalar processor can issue and

execute multiple instructions in one cycle. The
instructions are retrieved from a sequential instruction
stream and are usually scheduled dynamically.

¢ Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have

¢ Most CPUs since about 1998 are superscalar.
¢ Intel: since Pentium Pro

Carnegie Mellon

20

Superscaler example:		Nehalem	CPU
¢ Multiple	instructions	can	execute	in	parallel

1	load,	with	address	computation
1	store,	with	address	computation
2	simple	integer	(one	may	be	branch)
1	complex	integer	(multiply/divide)
1	FP	Multiply
1	FP	Add

¢ Some	instructions	take	>	1	cycle,	but	can	be	pipelined
Instruction Latency Cycles/Issue
Load	/	Store 4 1
Integer	Multiply 3 1
Integer/Long	Divide 11--21 11--21
Single/Double	FP	Multiply 4/5 1
Single/Double	FP	Add 3 1
Single/Double	FP	Divide 10--23 10--23

Carnegie Mellon

21

Loop	Unrolling

¢ Perform	2x	more	useful	work	per	iteration

void unroll2a_combine(vec_ptr v, data_t *dest)
{

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {

x = x OP d[i];
}
*dest = x;

}

Carnegie Mellon

22

Effect	of	Loop	Unrolling

¢ Helps	integer	multiply
§ below	latency	bound
§ Compiler	does	clever	optimization

¢ Others	don’t	improve.	Why?
§ Still	sequential	dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Unroll 2x 2.0 1.5 3.0 5.0
Latency
Bound

1.0 3.0 3.0 5.0

Carnegie Mellon

23

What	About	Branches?
¢ Challenge

§ Instruction	Control	Unit	must	work	well	ahead	of	Execution	Unit
to	generate	enough	operations	to	keep	EU	busy

§When	encounters	conditional	branch,	cannot	reliably	determine	where	to	
continue	fetching

80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
80489fe: movl %esi,%esi
8048a00: imull (%eax,%edx,4),%ecx

Executing

How	to	continue?

Carnegie Mellon

24

Branch	Outcomes
§When	encounter	conditional	branch,	cannot	determine	where	to	continue	
fetching
§ Branch	Taken:	Transfer	control	to	branch	target
§ Branch	Not-Taken:	Continue	with	next	instruction	in	sequence

§ Cannot	resolve	until	outcome	determined	by	branch/integer	unit

80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
80489fe: movl %esi,%esi
8048a00: imull (%eax,%edx,4),%ecx

8048a25: cmpl %edi,%edx
8048a27: jl 8048a20
8048a29: movl 0xc(%ebp),%eax
8048a2c: leal 0xffffffe8(%ebp),%esp
8048a2f: movl %ecx,(%eax)

Branch	Taken

Branch	Not-Taken

Carnegie Mellon

25

Branch	Prediction
¢ Idea

§ Guess	which	way	branch	will	go
§ Begin	executing	instructions	at	predicted	position

§ But	don’t	actually	modify	register	or	memory	data

80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
. . .

8048a25: cmpl %edi,%edx
8048a27: jl 8048a20
8048a29: movl 0xc(%ebp),%eax
8048a2c: leal 0xffffffe8(%ebp),%esp
8048a2f: movl %ecx,(%eax)

Predict	Taken

Begin
Execution

Carnegie Mellon

26

Branch	Prediction	Through	Loop
80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

i =	98

i =	99

i =	100

Predict	Taken	(OK)

Predict	Taken
(Oops)

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

i =	101

Assume	
vector	length	=	100

Read	
invalid	
location

Executed

Fetched

Carnegie Mellon

27

Branch	Misprediction	Invalidation
80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1

i =	98

i =	99

i =	100

Predict	Taken	(OK)

Predict	Taken	(Oops)

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx i =	101

Invalidate

Assume	
vector	length	=	100

Carnegie Mellon

28

Branch	Misprediction	Recovery

¢ Performance	Cost
§ Multiple	clock	cycles	on	modern	processor
§ Can	be	a	major	performance	limiter

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1
80488bb: leal 0xffffffe8(%ebp),%esp
80488be: popl %ebx
80488bf: popl %esi
80488c0: popl %edi

i =	99
Definitely	not	taken

The	Single	Core	Era
The	Memory	Hierarchy

• Why	have	a	hierarchy	of	memory?
• How	does	it	work?

©	2019	Karen	L.	Karavanic

Carnegie Mellon

30

The	CPU-Memory	Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

Disk

DRAM

CPU

SSD

Carnegie Mellon

31

Locality	Example

¢ Data	references
§ Reference	array	elements	in	succession	

(stride-1	reference	pattern).
§ Reference	variable	sum each	iteration.

¢ Instruction	references
§ Reference	instructions	in	sequence.
§ Cycle	through	loop	repeatedly.	

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial	locality
Temporal	locality

Spatial	locality
Temporal	locality

Carnegie Mellon

32

Memory	Hierarchies
¢ Some	fundamental	and	enduring	properties	of	hardware	

and	software:
§ Fast	storage	technologies	cost	more	per	byte,	have	less	capacity,	

and	require	more	power	(heat!).	
§ The	gap	between	CPU	and	main	memory	speed	is	widening.
§ Well-written	programs	tend	to	exhibit	good	locality.

¢ These	fundamental	properties	complement	each	other	
beautifully.

¢ They	suggest	an	approach	for	organizing	memory	and	
storage	systems	known	as	a	memory	hierarchy.

Carnegie Mellon

33

An	Example	Memory	Hierarchy

Registers

L1	cache
(SRAM)

Main	memory
(DRAM)

Local	secondary	storage
(local	disks)

Larger,		
slower,	
cheaper	
per	byte

Remote	secondary	storage
(tapes,	distributed	file	systems,	Web	servers)

Local	disks	hold	files	
retrieved	from	disks	on	
remote	network	servers

Main	memory	holds	disk	blocks	
retrieved	from	local	disks

L2	cache
(SRAM)

L1	cache	holds	cache	lines	retrieved	
from	L2	cache

CPU	registers	hold	words	retrieved	
from	L1	cache

L2	cache	holds	cache	lines	
retrieved	from	main	memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per	byte

Carnegie Mellon

34

Caches
¢ Cache: A	smaller,	faster	storage	device	that	acts	as	a	staging	

area	for	a	subset	of	the	data	in	a	larger,	slower	device.
¢ Fundamental	idea	of	a	memory	hierarchy:

§ For	each	k,	the	faster,	smaller	device	at	level	k serves	as	a	cache	for	the	
larger,	slower	device	at	level	k+1.

¢ Why	do	memory	hierarchies	work?
§ Because	of	locality,	programs	tend	to	access	the	data	at	level	k more	

often	than	they	access	the	data	at	level	k+1.	
§ Thus,	the	storage	at	level	k+1	can	be	slower,	and	thus	larger	and	

cheaper	per	bit.

¢ Big	Idea:		The	memory	hierarchy	creates	a	large	pool	of	
storage	that	costs	as	much	as	the	cheap	storage	near	the	
bottom,	but	that	serves	data	to	programs	at	the	rate	of	the	
fast	storage	near	the	top.

Carnegie Mellon

35

The	Memory	Hierarchy:		Summary
¢ The	speed	gap	between	CPU,	memory	and	mass	storage	

continues	to	widen.

¢ Well-written	programs	exhibit	a	property	called	locality.

¢ Memory	hierarchies	based	on	caching	close	the	gap	by	
exploiting	locality.

Carnegie Mellon

36

Cache	Memories
¢ Cache	memories	are	small,	fast	SRAM-based	memories	

managed	automatically	in	hardware.	
§ Hold	frequently	accessed	blocks	of	main	memory

¢ CPU	looks	first	for	data	in	caches	(e.g.,	L1,	L2,	and	L3),	
then	in	main	memory.

¢ Typical	single	core	system	structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memories

©	2019	Karen	L.	Karavanic

Technology	Trends:	Microprocessor	Capacity

2X	transistors/Chip	Every	1.5	years
Called	“Moore’s	Law”

Moore’s	Law

Microprocessors	have	
become	smaller,	denser,	and	
more	powerful.

Gordon	Moore	(co-founder	of	Intel)	
predicted	in	1965	that	the	transistor	
density	of	semiconductor	chips	would	
double	roughly	every	18	months.	

Slide	source:	Jack	Dongarra

©	2019	Karen	L.	Karavanic

Microprocessor	Transistors	and	Clock	Rate

i4004

i80286
i80386

i8080

i8086

R3000
R2000

R10000
Pentium

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005
Year

T
ra

ns
is
to

rs

Growth in transistors per chip Increase in clock rate

0.1

1

10

100

1000

1970 1980 1990 2000
Year

C
lo

ck
 R

at
e

(M
H

z)

Why	bother	with	parallel	programming?		Just	wait	a	year	or	two…

©	2019	Karen	L.	Karavanic

Limit	#1:	Power	density

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w
er
	D
en

sit
y	
(W

/c
m

2)

Hot	Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source:	Patrick	
Gelsinger,	Intelâ

Scaling	clock	speed	(business	as	usual)	will	not	work

Can	soon	put	more	transistors	on	a	chip	than	can	afford	to	turn	on.	
-- Patterson	‘07

©	2019	Karen	L.	Karavanic

Parallelism	Saves	Power
• Exploit	explicit	parallelism	for	reducing	power

Power = C * V2 * F Performance = Cores * F

Capacitance Voltage Frequency

• Using	additional	cores
– Increase	density	(=	more	transistors	=	more	capacitance)
– Can	increase	cores	(2x)	and	performance	(2x)
– Or	increase	cores	(2x),	but	decrease	frequency	(1/2):	same	
performance	at	¼	the	power	

Power = 2C * V2 * F Performance = 2Cores * FPower = 2C * V2/4 * F/2 Performance = 2Cores * F/2Power = (C * V2 * F)/4 Performance = (Cores * F)*1

• Additional	benefits
– Small/simple	cores	àmore	predictable	performance

©	2019	Karen	L.	Karavanic

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

25%/year

52%/year

??%/year

Limit	#2:	Hidden	Parallelism	Tapped	Out

• VAX:		25%/year	
1978	to	1986

• RISC	+	x86:	52%/year	
1986	to	2002

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

Application	performance	was	increasing	by	52%	per	year	as	measured	by	the	SpecInt	
benchmarks	here

• ½ due to transistor density
• ½ due to architecture

changes, e.g., Instruction
Level Parallelism (ILP)

©	2019	Karen	L.	Karavanic

Limit	#2:	Hidden	Parallelism	Tapped	Out

• Superscalar	(SS)	designs	were	the	state	of	the	art;	many	
forms	of	parallelism	not	visible	to	programmer
– multiple	instruction	issue
– dynamic	scheduling:	hardware	discovers	parallelism	

between	instructions
– speculative	execution:	look	past	predicted	branches
– non-blocking	caches:	multiple	outstanding	memory	ops

• Unfortunately,	these	sources	have	been	used	up

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor	Performance	(SPECint)	Today

• VAX :	25%/year	1978	to	1986
• RISC	+	x86:	52%/year	1986	to	2002
• RISC	+	x86:	??%/year	2002	to	present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

Þ Sea	change	in	chip	design:	
multiple	“cores” or	processors	
per	chip

3X

2x	every	5	
years?

©	2019	Karen	L.	Karavanic

Limit	#3:	Chip	Yield	

• Moore’s (Rock’s) 2nd law:
fabrication costs go up

• Yield (% usable chips)
drops

• Parallelism can help
•More	smaller,	simpler	processors	are	
easier	to	design	and	validate
•Can	use	partially	working	chips:
•E.g.,	Cell	processor	(PS3)	is	sold	with	7	
out	of	8	“on” to	improve	yield

Manufacturing	costs	and	yield	problems	limit	use	of	density

©	2019	Karen	L.	Karavanic

Limit	#4:	Speed	of	Light	(Fundamental)

• Consider	the	1	Tflop/s	sequential	machine:
– Data	must	travel	some	distance,	r,	to	get	from	memory	to	
CPU.

– To	get	1	data	element	per	cycle,	this	means	1012 times	per	
second	at	the	speed	of	light,	c	=	3x108 m/s.		Thus	r	<	
c/1012	=	0.3	mm.

• Now	put	1	Tbyte	of	storage	in	a	0.3	mm	x	0.3	mm	area:
– Each	bit	occupies	about	1	square	Angstrom,	or	the	size	of	
a	small	atom.

• No	choice	but	parallelism

r	=	0.3	mm
1	Tflop/s,	1	Tbyte	
sequential	machine

©	2019	Karen	L.	Karavanic

Thus,	the	Multicore	Era
• Chip	density	is	

continuing	increase	
~2x	every	2	years*
– Clock	speed	is	not
– Number	of	

processor	cores	
may	double	instead

• There	is	little	or	no	
hidden	parallelism	
(ILP)	to	be	found

• Parallelism	must	be	
exposed	to	and	
managed	by	software

Source:	Intel,	Microsoft	(Sutter)	and	
Stanford	(Olukotun,	Hammond)

Carnegie Mellon

47

Intel	Core	i7	Cache	Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1	i-cache	and	d-cache:

32	KB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MB,	16-way,
Access:	30-40	cycles

Block	size:	64	bytes	for	
all	caches.	

What	is	Manycore ?

• What	if	we	use	all	of	the	transisters on	a	chip	for	
as	many	cores	as	we	can	fit??

• Beyond	the	edge	of	number	of	cores	in	common	
“multicore”	architectures

• Dividing	line	is	not	clearly	defined
• Active	research,	now	in	embedded	&	clusters
• Examples:	

– NVIDIA	Fermi	Graphics	Processing	Unit	(GPU)
• First	model:	32	“CUDA	cores”	per	SM,	16	SMs

– (SM	=	“streaming	multiprocessor”)
• K20	model:		2496	CUDA	cores,	peak	3.52	Tflops

©	2019	Karen	L.	Karavanic

Ex:		NVIDIA	Fermi

©	2019	Karen	L.	Karavanic

What	is	Manycore ?

• Examples	(cont’d)
– Intel	Xeon	Phi	coprocessor	and	Knights	Landing

• Up	to	61	cores
• Example:		Tianhe-2	Supercomputer	has	32,000	
multicore	central	processing	units	(CPUs)	and	48,000	
coprocessors (“accelerators”);	peak	33.86	Petaflops

– Tilera Tile-Gx
• 100	cores,	64-bit

©	2019	Karen	L.	Karavanic

