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The	Memory	Hierarchy

¢ Storage	technologies	and	trends
¢ Locality	of	reference
¢ Cache	memory	organization	and	operation
¢ Performance	impact	of	caches

§ The	memory	mountain
§ Rearranging	loops	to	improve	spatial	locality
§ Using	blocking	to	improve	temporal	locality
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Random-Access	Memory	(RAM)
¢ Key	features

§ RAM is	traditionally	packaged	as	a	chip.
§ Basic	storage	unit	is	normally	a	cell (one	bit	per	cell).
§ Multiple	RAM	chips	form	a	memory.

¢ RAM	comes	in	three	varieties:
§ SRAM	(Static	RAM)
§ DRAM	(Dynamic	RAM)
§ NVRAM	(Non-volatile	RAM)
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SRAM	vs DRAM	Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers
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Nonvolatile	Memories
¢ DRAM	and	SRAM	are	volatile	memories

§ Lose	information	if	powered	off.
¢ Nonvolatile	memories	retain	value	even	if	powered	off

§ Read-only	memory	(ROM):	programmed	during	production
§ Programmable	ROM	(PROM):	can	be	programmed	once
§ Eraseable PROM	(EPROM):	can	be	bulk	erased	(UV,	X-Ray)
§ Electrically	eraseable PROM	(EEPROM):	electronic	erase	capability
§ Flash	memory:	EEPROMs.	with	partial	(block-level)	erase	capability

§ Wears	out	after	about	100,000	erasings
§ **	New	Technologies	emerging	**

¢ Uses	for	Nonvolatile	Memories
§ Firmware	programs	stored	in	a	ROM	(BIOS,	controllers	for	disks,	

network	cards,	graphics	accelerators,	security	subsystems,…)
§ Solid	state	disks	(replace	rotating	disks	in	thumb	drives,	smart	phones,	

mp3	players,	tablets,	laptops,…)
§ Disk	caches
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Traditional	Bus	Structure	Connecting	
CPU	and	Memory
¢ A	bus is	a	collection	of	parallel	wires	that	carry	address,	

data,	and	control	signals.
¢ Buses	are	typically	shared	by	multiple	devices.

Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus
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Memory	Read	Transaction	(1)
¢ CPU	places	address	A	on	the	memory	bus.

ALU

Register file

Bus interface
A

0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax



Carnegie Mellon

7Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Memory	Read	Transaction	(2)
¢ Main	memory	reads	A	from	the	memory	bus,	retrieves	

word	x,	and	places	it	on	the	bus.

ALU

Register file

Bus interface

x 0

Ax

Main memory

%rax

I/O bridge

Load operation: movq A, %rax
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Memory	Read	Transaction	(3)
¢ CPU	read	word	x	from	the	bus	and	copies	it	into	register	

%rax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax
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Memory	Write	Transaction	(1)
¢ CPU	places	address	A	on	bus.	Main	memory	reads	it	and	

waits	for	the	corresponding	data	word	to	arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory	Write	Transaction	(2)
¢ CPU	places	data	word	y on	the	bus.

y
ALU

Register file

Bus interface
y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory	Write	Transaction	(3)
¢ Main	memory	reads	data	word	y from	the	bus	and	stores	

it	at	address	A.

y
ALU

Register file

Bus interface y

main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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What’s	Inside	A	Disk	Drive?
SpindleArm

Actuator

Platters

Electronics
(including a 
processor 
and memory!)SCSI

connector

Image courtesy of Seagate Technology
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Disk	Geometry
¢ Disks	consist	of	platters,	each	with	two	surfaces.
¢ Each	surface	consists	of	concentric	rings	called	tracks.
¢ Each	track	consists	of	sectors separated	by	gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps
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Disk	Geometry	(Muliple-Platter	View)
¢ Aligned	tracks	form	a	cylinder.

Surface 0
Surface 1
Surface 2
Surface 3
Surface 4
Surface 5

Cylinder k

Spindle

Platter 0

Platter 1

Platter 2
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Disk	Capacity
¢ Capacity:	maximum	number	of	bits	that	can	be	stored.

§ Vendors	express	capacity	in	units	of	gigabytes	(GB),		where
1	GB	=	109 Bytes.	
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Computing	Disk	Capacity
Capacity	=		(#	bytes/sector)	x (avg.	#	sectors/track)	x

(#	tracks/surface)	x (#	surfaces/platter)	x
(#	platters/disk)

Example:
§ 512	bytes/sector
§ 300	sectors/track	(on	average)
§ 20,000	tracks/surface
§ 2	surfaces/platter
§ 5	platters/disk

Capacity	=	512	x 300	x 20000	x 2	x 5
=	30,720,000,000
=	30.72	GB	
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Disk	Operation	(Single-Platter	View)

The disk surface 
spins at a fixed
rotational rate

By moving radially, the arm can 
position the read/write head over 
any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

spindle

spindle

sp
in

dl
e

spindlespindle
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Disk	Operation	(Multi-Platter	View)

Arm

Read/write heads 
move in unison

from cylinder to cylinder

Spindle
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Tracks divided into sectors

Disk	Structure	- top	view	of	single	platter

Surface organized into tracks
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Disk	Access

Head in position above a track
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Disk	Access

Rotation is counter-clockwise
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Disk	Access	– Read

About to read blue sector
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Disk	Access	– Read

After BLUE read

After reading blue sector
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Disk	Access	– Read

After BLUE read

Red request scheduled next
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Disk	Access	– Seek

After BLUE read Seek for RED

Seek to red’s track
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Disk	Access	– Rotational	Latency

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around
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Disk	Access	– Read

After BLUE read Seek for RED Rotational latency After RED read

Complete read of red
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Disk	Access	– Service	Time	Components

After BLUE read Seek for RED Rotational latency After RED read

Data	transfer Seek Rotational	
latency

Data	transfer



Carnegie Mellon

29Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Disk	Access	Time
¢ Average	time	to	access	some	target	sector	approximated	by	:

§ Taccess =		Tavg seek	+		Tavg rotation	+	Tavg transfer	

¢ Seek	time	(Tavg seek)
§ Time	to	position	heads	over	cylinder	containing	target	sector.
§ Typical		Tavg seek	is	3—9	ms

¢ Rotational	latency	(Tavg rotation)
§ Time	waiting	for	first	bit	of	target	sector	to	pass	under	r/w head.
§ Tavg rotation	=	1/2	x 1/RPMs	x 60	sec/1	min
§ Typical	Tavg rotation	=	7200	RPMs

¢ Transfer	time	(Tavg transfer)
§ Time	to	read	the	bits	in	the	target	sector.
§ Tavg transfer	=	1/RPM	x 1/(avg	#	sectors/track)	x 60	secs/1	min.
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Disk	Access	Time	Example
¢ Given:

§ Rotational	rate	=	7,200	RPM
§ Average	seek	time	=	9	ms.
§ Avg #	sectors/track	=	400.

¢ Derived:
§ Tavg rotation	=	1/2	x (60	secs/7200	RPM)	x 1000	ms/sec	=	4	ms.
§ Tavg transfer	=	60/7200	RPM	x 1/400	secs/track	x 1000	ms/sec	=	0.02	ms
§ Taccess =	9	ms	+	4	ms	+	0.02	ms

¢ Important	points:
§ Access	time	dominated	by	seek	time	and	rotational	latency.
§ First	bit	in	a	sector	is	the	most	expensive,	the	rest	are	free.
§ SRAM	access	time	is	about		4	ns/doubleword,	DRAM	about		60	ns

§ Disk	is	about	40,000	times	slower	than	SRAM,	
§ 2,500	times	slower	then	DRAM.
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Logical	Disk	Blocks
¢ Modern	disks	present	a	simpler	abstract	view	of	the	

complex	sector	geometry:
§ The	set	of	available	sectors	is	modeled	as	a	sequence	of	b-sized	

logical	blocks	(0,	1,	2,	...)

¢ Mapping	between	logical	blocks	and	actual	(physical)	
sectors
§ Maintained	by	hardware/firmware	device	called	disk	controller.
§ Converts	requests	for	logical	blocks	into	(surface,track,sector)	

triples.

¢ Allows	controller	to	set	aside	spare	cylinders	for	each	
zone.
§ Accounts	for	the	difference	in	“formatted	capacity”	and	“maximum	

capacity”.	
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Solid	State	Disks	(SSDs)

¢ Pages:	512KB	to	4KB,	Blocks:	32	to	128	pages
¢ Data	read/written	in	units	of	pages.	
¢ Page	can	be	written	only	after	its	block	has	been	erased
¢ A	block	wears	out	after	about	100,000	repeated	writes.

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)
Requests to read and 
write logical disk blocks
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SSD	Performance	Characteristics

¢ Sequential	access	faster	than	random	access
§ Common	theme	in	the	memory	hierarchy

¢ Random	writes	are	somewhat	slower
§ Erasing	a	block	takes	a	long	time	(~1	ms)
§ Modifying	a	block	page	requires	all	other	pages	to	be	copied	to	

new	block
§ In	earlier	SSDs,	the	read/write	gap	was	much	larger.

Sequential	read	tput 550	MB/s Sequential	write	tput 470	MB/s
Random	read	tput 365	MB/s Random	write	tput 303	MB/s
Avg seq read	time 50	us Avg seq write	time 60	us

Source:	Intel	SSD	730	product	specification.
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SSD	Tradeoffs vs	Rotating	Disks
¢ Advantages	

§ No	moving	parts	à faster,	less	power,	more	rugged

¢ Disadvantages
§ Have	the	potential	to	wear	out	

§ Mitigated	by	“wear	leveling	logic”	in	flash	translation	layer
§ E.g.	Intel	SSD	730	guarantees	128	petabyte	(128	x	1015 bytes)	of	
writes	before	they	wear	out

§ In	2015,	about	30	times	more	expensive	per	byte

¢ Applications
§ MP3	players,	smart	phones,	laptops
§ Beginning	to	appear	in	desktops	and	servers
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Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000
access (ns) 200 100 70 60 50 40 20 10
typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage	Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333
access (ms) 75 28 10 8 5 3 3 25
typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116
access (ns) 150 35 15 3 2 1.5 200 115
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The	CPU-Memory	Gap
The gap between DRAM, disk, and CPU speeds. 

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e 
(n

s)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk



Carnegie Mellon

37Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Locality	to	the	Rescue!

The	key	to	bridging	this	CPU-Memory	gap	is	a	fundamental	
property	of	computer	programs	known	as	locality
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Today
¢ Storage	technologies	and	trends
¢ Locality	of	reference
¢ Cache	memory	organization	and	operation
¢ Performance	impact	of	caches

§ The	memory	mountain
§ Rearranging	loops	to	improve	spatial	locality
§ Using	blocking	to	improve	temporal	locality
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Locality
¢ Principle	of	Locality: Programs	tend	to	use	data	and	

instructions	with	addresses	near	or	equal	to	those	they	
have	used	recently

¢ Temporal	locality:		
§ Recently	referenced	items	are	likely	

to	be	referenced	again	in	the	near	future

¢ Spatial	locality:		
§ Items	with	nearby	addresses	tend	

to	be	referenced	close	together	in	time



Carnegie Mellon

40Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Locality	Example

¢ Data	references
§ Reference	array	elements	in	succession	

(stride-1	reference	pattern).
§ Reference	variable	sum each	iteration.

¢ Instruction	references
§ Reference	instructions	in	sequence.
§ Cycle	through	loop	repeatedly.	

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial	locality
Temporal	locality

Spatial	locality
Temporal	locality
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Qualitative	Estimates	of	Locality
¢ Claim: Being	able	to	look	at	code	and	get	a	qualitative	

sense	of	its	locality	is	a	key	skill	for	a	professional	
programmer.

¢ Question: Does	this	function	have	good	locality	with	
respect	to	array	a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}
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Locality	Example
¢ Question: Does	this	function	have	good	locality	with	

respect	to	array	a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}
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int sumarray3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum
}

Practice	problem	6.7
Permute the loops so that the function scans the 3-d 

array a[] with a stride-1 reference pattern (and 
thus has good spatial locality)
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int sumarray3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (k = 0; k < M; k++)
for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
sum += a[k][i][j];

return sum
}

Practice	problem	6.7
Permute the loops so that the function scans the 3-d 

array a[] with a stride-1 reference pattern (and 
thus has good spatial locality)?
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Memory	Hierarchies
¢ Some	fundamental	and	enduring	properties	of	hardware	

and	software:
§ Fast	storage	technologies	cost	more	per	byte,	have	less	capacity,	

and	require	more	power	(heat!).	
§ The	gap	between	CPU	and	main	memory	speed	is	widening.
§ Well-written	programs	tend	to	exhibit	good	locality.

¢ These	fundamental	properties	complement	each	other	
beautifully.

¢ They	suggest	an	approach	for	organizing	memory	and	
storage	systems	known	as	a	memory	hierarchy.
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Example Memory 
Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.
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Today
¢ Storage	technologies	and	trends
¢ Locality	of	reference
¢ Cache	memory	organization	and	operation
¢ Performance	impact	of	caches

§ The	memory	mountain
§ Rearranging	loops	to	improve	spatial	locality
§ Using	blocking	to	improve	temporal	locality
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Caches
¢ Cache: A	smaller,	faster	storage	device	that	acts	as	a	staging	

area	for	a	subset	of	the	data	in	a	larger,	slower	device.
¢ Fundamental	idea	of	a	memory	hierarchy:

§ For	each	k,	the	faster,	smaller	device	at	level	k serves	as	a	cache	for	the	
larger,	slower	device	at	level	k+1.

¢ Why	do	memory	hierarchies	work?
§ Because	of	locality,	programs	tend	to	access	the	data	at	level	k more	

often	than	they	access	the	data	at	level	k+1.	
§ Thus,	the	storage	at	level	k+1	can	be	slower,	and	thus	larger	and	

cheaper	per	bit.

¢ Big	Idea:		The	memory	hierarchy	creates	a	large	pool	of	
storage	that	costs	as	much	as	the	cheap	storage	near	the	
bottom,	but	that	serves	data	to	programs	at	the	rate	of	the	
fast	storage	near	the	top.
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Examples	of	Caching	in	the	Mem.	Hierarchy

Hardware	
MMU

0On-Chip	TLBAddress	translationsTLB

Web	browser10,000,000Local	diskWeb	pagesBrowser	cache

Web	cache

Network	buffer	
cache

Buffer	cache

Virtual	Memory

L2	cache

L1	cache

Registers

Cache	Type

Web	pages

Parts	of	files

Parts	of	files

4-KB	pages

64-byte	blocks

64-byte	blocks

4-8	bytes	words

What	is	Cached?

Web	proxy	
server

1,000,000,000Remote	server	disks

OS100Main	memory

Hardware4On-Chip	L1

Hardware10On-Chip	L2

NFS	client10,000,000Local	disk

Hardware	+	OS100Main	memory

Compiler0CPU	core

Managed	ByLatency	(cycles)Where	is	it	Cached?

Disk	cache Disk	sectors Disk	controller 100,000 Disk	firmware
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General	Cache	Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger,	slower,	cheaper	memory
viewed	as	partitioned	into	“blocks”

Data	is	copied	in	block-sized	
transfer	units

Smaller,	faster,	more	expensive
memory	caches	a		subset	of
the	blocks

4

4

4

10

10

10
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General	Cache	Concepts:	Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data	in	block	b	is	neededRequest:	14

14
Block	b	is	in	cache:
Hit!
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General	Cache	Concepts:	Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data	in	block	b	is	neededRequest:	12

Block	b	is	not	in	cache:
Miss!

Block	b	is	fetched	from
memoryRequest:	12

12

12

12

Block	b	is	stored	in	cache
• Placement	policy:
determines	where	b	goes

•Replacement	policy:
determines	which	block
gets	evicted	(victim)
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General	Caching	Concepts:	
Types	of	Cache	Misses

¢ Cold	(compulsory)	miss
§ Cold	misses	occur	because	the	cache	is	empty.

¢ Conflict	miss
§ Most	caches	limit	blocks	at	level	k+1	to	a	small	subset	(sometimes	a	

singleton)	of	the	block	positions	at	level	k.
§ E.g.	Block	i at	level	k+1	must	be	placed	in	block	(i mod	4)	at	level	k.

§ Conflict	misses	occur	when	the	level	k cache	is	large	enough,	but	multiple	
data	objects	all	map	to	the	same	level	k block.
§ E.g.	Referencing	blocks	0,	8,	0,	8,	0,	8,	...	would	miss	every	time.

¢ Capacity	miss
§ Occurs	when	the	set	of	active	cache	blocks	(working	set)	is	larger	than	

the	cache.
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Cache	Memories
¢ Cache	memories	are	small,	fast	SRAM-based	memories	

managed	automatically	in	hardware
§ Hold	frequently	accessed	blocks	of	main	memory

¢ CPU	looks	first	for	data	in	cache
¢ Typical	system	structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache 
memory
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General	Cache	Organization	(S,	E,	B)
E	=	2e lines	per	set

S	=	2s sets

set

line

0 1 2 B-1tagv

B	=	2b bytes	per	cache	block	(the	data)

Cache	size:
C	=	S	x	E	x	B	data	bytes

valid	bit
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Cache	Read
E	=	2e lines	per	set

S	=	2s sets

0 1 2 B-1tagv

valid	bit
B	=	2b bytes	per	cache	block	(the	data)

t	bits s	bits b	bits
Address	of	word:

tag set
index

block
offset

data	begins	at	this	offset

• Locate	set
• Check	if	any	line	in	set
has	matching	tag

• Yes	+	line	valid:	hit
• Locate	data	starting
at	offset
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t	bits s	bits b	bits
Address	of	word:

tag set
index

block
offset

General	Cache	Organization
S	sets

n s	=	#	address	bits	used	to	select	set
n s	=	log2S

B	blocks	per	line
n b	=	#	address	bits	used	to	select	byte	in	line
n b	=	log2B

How	big	is	the	tag?
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t	bits s	bits b	bits
Address	of	word:

tag set
index

block
offset

¢ M	=	Total	size	of	main	memory
n 2m	addresses
n m	=	#	address	bits	=	log2M
n x86-64

l m	=	64
l M	=	264

¢ Tag	consists	of	bits	not	used	in	set	index	and	block	offset
n Tag	must	uniquely	identify	data

§m = t + s + b
t = m – s - b

General	Cache	Organization
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Cache m C B E S s b t

1 32 1024 4 1

2 32 1024 8 4

3 32 1024 32 32

Cache size = C = S * E * B

# of tag bits = m - (s+b)

Practice	problem	6.9
The table gives the parameters for a number of 

different caches.  For each cache, derive the 
missing values

256 8 2 22

32 5 3 24

1 0 5 27
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Example:	Direct	Mapped	Cache	(E	=	1)

S	=	2s sets

Direct	mapped:	One	line	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find	set
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Example:	Direct	Mapped	Cache	(E	=	1)
Direct	mapped:	One	line	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

match:	assume	yes	=	hitvalid?			+

block	offset

tag
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Example:	Direct	Mapped	Cache	(E	=	1)
Direct	mapped:	One	line	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

match:	assume	yes	=	hitvalid?			+

int (4	Bytes)	is	here

block	offset

If	tag	doesn’t	match:	old	line	is	evicted	and	replaced
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Direct-Mapped	Cache	Simulation
M=16	bytes	(4-bit	addresses),	B=2	bytes/block,	
S=4	sets,	E=1 Blocks/set

Address	trace	(reads,	one	byte	per	read):
0 [00002],	
1 [00012],		
7 [01112],		
8 [10002],		
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set	0
Set	1
Set	2
Set	3
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E-way	Set	Associative	Cache	(Here:	E	=	2)
E	=	2:	Two	lines	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	short	int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find	set
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E-way	Set	Associative	Cache	(Here:	E	=	2)
E	=	2:	Two	lines	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	short	int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare	both

valid?		+	 match:	yes	=	hit

block	offset

tag
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E-way	Set	Associative	Cache	(Here:	E	=	2)
E	=	2:	Two	lines	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	short	int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare	both

valid?		+	 match:	yes	=	hit

block	offset

short	int (2	Bytes)	is	here

No	match:	
• One	line	in	set	is	selected	for	eviction	and	replacement
• Replacement	policies:	random,	least	recently	used	(LRU),	…
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2-Way	Set	Associative	Cache	Simulation

M=16	byte	addresses,	B=2	bytes/block,	
S=2	sets,	E=2 blocks/set

Address	trace	(reads,	one	byte	per	read):
0 [00002],	
1 [00012],		
7 [01112],		
8 [10002],		
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set	0

Set	1
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What	about	writes?
¢ Multiple	copies	of	data	exist:

§ L1,	L2,	L3,	Main	Memory,	Disk

¢ What	to	do	on	a	write-hit?
§ Write-through	(write	immediately	to	memory)
§ Write-back	(defer	write	to	memory	until	replacement	of	line)

§ Need	a	dirty	bit	(line	different	from	memory	or	not)

¢ What	to	do	on	a	write-miss?
§ Write-allocate	(load	into	cache,	update	line	in	cache)

§ Good	if	more	writes	to	the	location	follow
§ No-write-allocate	(writes	straight	to	memory,	does	not	load	into	cache)

¢ Typical
§ Write-through	+	No-write-allocate
§ Write-back	+	Write-allocate
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Cache	Performance	Metrics
¢ Miss	Rate

§ Fraction	of	memory	references	not	found	in	cache	(misses	/	accesses)
=	1	– hit	rate

§ Typical	numbers	(in	percentages):
§ 3-10%	for	L1
§ can	be	quite	small	(e.g.,	<	1%)	for	L2,	depending	on	size,	etc.

¢ Hit	Time
§ Time	to	deliver	a	line	in	the	cache	to	the	processor

§ includes	time	to	determine	whether	the	line	is	in	the	cache
§ Typical	numbers:

§ 4	clock	cycle	for	L1
§ 10	clock	cycles	for	L2

¢ Miss	Penalty
§ Additional	time	required	because	of	a	miss

§ typically	50-200	cycles	for	main	memory	(Trend:	increasing!)
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Let’s	think	about	those	numbers
¢ Huge	difference	between	a	hit	and	a	miss

§ Could	be	100x,	if	just	L1	and	main	memory

¢ Would	you	believe	99%	hits	is	twice	as	good	as	97%?
§ Consider:	

cache	hit	time	of	1	cycle
miss	penalty	of	100	cycles

§ Average	access	time:
97%	hits:		1	cycle	+	0.03	*	100	cycles	= 4	cycles
99%	hits:		1	cycle	+	0.01	*	100	cycles	=	2	cycles

¢ This	is	why	“miss	rate”	is	used	instead	of	“hit	rate”
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Writing	Cache	Friendly	Code
¢ Make	the	common	case	go	fast

§ Focus	on	the	inner	loops	of	the	core	functions

¢ Minimize	the	misses	in	the	inner	loops
§ Repeated	references	to	variables	are	good	(temporal	locality)
§ Stride-1	reference	patterns	are	good	(spatial	locality)
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Today
¢ Cache	organization	and	operation
¢ Performance	impact	of	caches

§ The	memory	mountain
§ Rearranging	loops	to	improve	spatial	locality
§ Using	blocking	to	improve	temporal	locality
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The	Memory	Mountain
¢ Read	throughput	(read	bandwidth)

§ Number	of	bytes	read	from	memory	per	second	(MB/s)

¢ Memory	mountain:	Measured	read	throughput	as	a	
function	of	spatial	and	temporal	locality.
§ Compact	way	to	characterize	memory	system	performance.	
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Memory	Mountain	Test	Function
long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of
*        array “data” with stride of "stride", using 
*        using 4x4 loop unrolling.                                                            
*/
int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call	test() with	many	
combinations	of	elems
and	stride.

For each elems
and stride:

1. Call test() 
once to warm up 
the caches.

2. Call test() 
again and measure 
the read 
throughput(MB/s)

mountain/mountain.c
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The	Memory	Mountain
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Today
¢ Cache	organization	and	operation
¢ Performance	impact	of	caches

§ The	memory	mountain
§ Rearranging	loops	to	improve	spatial	locality
§ Using	blocking	to	improve	temporal	locality
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Matrix	Multiplication	Example
¢ Description:

§ Multiply	N	x	N	matrices
§ Matrix	elements	are	

doubles (8	bytes)
§ O(N3)	total	operations
§ N	reads	per	source	

element
§ N	values	summed	per	

destination
§ but	may	be	able	to	
hold	in	register

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

Variable sum
held in register

matmult/mm.c
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Miss	Rate	Analysis	for	Matrix	Multiply
¢ Assume:

§ Block	size	=	32B	(big	enough	for	four	doubles)
§ Matrix	dimension	(N)	is	very	large

§ Approximate	1/N	as	0.0
§ Cache	is	not	even	big	enough	to	hold	multiple	rows

¢ Analysis	Method:
§ Look	at	access	pattern	of	inner	loop

A

k

i

B

k

j

C

i

j

= x
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Layout	of	C	Arrays	in	Memory	(review)
¢ C	arrays	allocated	in	row-major	order

§ each	row	in	contiguous	memory	locations
¢ Stepping	through	columns	in	one	row:

§ for (i = 0; i < N; i++)
sum += a[0][i];

§ accesses	successive	elements
§ if	block	size	(B)	>	sizeof(aij)	bytes,	exploit	spatial	locality

§ miss	rate	=	sizeof(aij)	/	B
¢ Stepping	through	rows	in	one	column:

§ for (i = 0; i < n; i++)
sum += a[i][0];

§ accesses	distant	elements
§ no	spatial	locality!

§ miss	rate	=	1	(i.e.	100%)
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Matrix	Multiplication	(ijk)

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

A B C
(i,*)

(*,j)
(i,j)

Inner	loop:

Column-
wise

Row-wise Fixed

Misses per	inner	loop	iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix	Multiplication	(jik)

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner	loop:

Row-wise Column-
wise

Fixed

Misses per	inner	loop	iteration:
A B C

0.25 1.0 0.0

matmult/mm.c
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Matrix	Multiplication	(kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner	loop:

Row-wise Row-wiseFixed

Misses	per inner	loop	iteration:
A B C
0.0 0.25 0.25

matmult/mm.c
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Matrix	Multiplication	(ikj)

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner	loop:

Row-wise Row-wiseFixed

Misses	per inner	loop	iteration:
A B C
0.0 0.25 0.25

matmult/mm.c
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Matrix	Multiplication	(jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner	loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses	per inner	loop	iteration:
A B C
1.0 0.0 1.0

matmult/mm.c
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Matrix	Multiplication	(kji)

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner	loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per	inner	loop	iteration:
A B C
1.0 0.0 1.0

matmult/mm.c
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Summary	of	Matrix	Multiplication

ijk (&	jik):	
• 2	loads,	0	stores
• misses/iter =	1.25

kij	(&	ikj):	
• 2	loads,	1	store
• misses/iter	=	0.5

jki	(&	kji):	
• 2	loads,	1	store
• misses/iter	=	2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}
} 

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];   

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}
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Core	i7	Matrix	Multiply	Performance
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Today
¢ Cache	organization	and	operation
¢ Performance	impact	of	caches

§ The	memory	mountain
§ Rearranging	loops	to	improve	spatial	locality
§ Using	blocking	to	improve	temporal	locality
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Example:	Matrix	Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];
}
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Cache	Miss	Analysis
¢ Assume:	

§ Matrix	elements	are	doubles
§ Cache	block	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n)

¢ First	iteration:
§ n/8	+	n	=	9n/8	misses

§ Afterwards	in	cache:
(schematic)

*=

n

*=
8	wide
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Cache	Miss	Analysis
¢ Assume:	

§ Matrix	elements	are	doubles
§ Cache	block	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n)

¢ Second	iteration:
§ Again:

n/8	+	n	=	9n/8	misses

¢ Total	misses:
§ 9n/8	*	n2 =	(9/8)	*	n3

n

*=
8	wide
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Blocked	Matrix	Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=
c

+

Block	size	B	x	B

matmult/bmm.c
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Cache	Miss	Analysis
¢ Assume:	

§ Cache	block	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n)
§ Three	blocks							fit	into	cache:	3B2 <	C

¢ First	(block)	iteration:
§ B2/8	misses	for	each	block
§ 2n/B	*	B2/8	=	nB/4

(omitting	matrix	c)

§ Afterwards	in	cache
(schematic)

*=

*=

Block	size	B	x	B

n/B	blocks
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Cache	Miss	Analysis
¢ Assume:	

§ Cache	block	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n)
§ Three	blocks							fit	into	cache:	3B2 <	C

¢ Second	(block)	iteration:
§ Same	as	first	iteration
§ 2n/B	*	B2/8	=	nB/4

¢ Total	misses:
§ nB/4	*	(n/B)2 =	n3/(4B)

*=

Block	size	B	x	B

n/B	blocks
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Blocking	Summary
¢ No	blocking:	(9/8)	*	n3

¢ Blocking:	1/(4B)	*	n3

¢ Suggest	largest	possible	block	size	B,	but	limit	3B2 <	C!

¢ Reason	for	dramatic	difference:
§ Matrix	multiplication	has	inherent	temporal	locality:

§ Input	data:	3n2,	computation	2n3

§ Every	array	elements	used	O(n)	times!
§ But	program	has	to	be	written	properly
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Cache	Summary
¢ Cache	memories	can	have	significant	performance	impact

¢ You	can	write	your	programs	to	exploit	this!
§ Focus	on	the	inner	loops,	where	bulk	of	computations	and	memory	

accesses	occur.	
§ Try	to	maximize	spatial	locality	by	reading	data	objects	with	

sequentially	with	stride	1.
§ Try	to	maximize	temporal	locality	by	using	a	data	object	as	often	as	

possible	once	it’s	read	from	memory.	
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Summary
¢ The	speed	gap	between	CPU,	memory	and	mass	storage	

continues	to	widen.

¢ Well-written	programs	exhibit	a	property	called	locality.

¢ Memory	hierarchies	based	on	caching close	the	gap	by	
exploiting	locality.
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The	Memory	Hierarchy
and
Cache	Memories	
15-213:	Introduction	to	Computer	Systems
11th Lecture,	Oct.	6,	2015	and	12th Lecture,	Oct.	8,	2015
Instructors:
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This	lecture	Contains	slides	from:


