
1

Welcome	to	Café	201
(also	known	as	CS	201	Computer Systems	

Programming)

Spring	2019
Course	Introduction

Instructor: Dr.	Karen	L.	Karavanic

2

Pre-
processor

(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object

programs
(binary)

Executable
object
program
(binary)

printf.o

Hello, World
#include <stdio.h>

int main()
{

printf("hello, world\n");
}

3

Main
memory

I/O
bridge

Bus interface

ALU

Register file
CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

MouseKeyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

4

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

MouseKeyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

hello code

"hello,world\n"

5

Carnegie Mellon

Course	Theme:
Abstraction	Is	Good	But	Don’t	Forget	Reality

¢ Most	CS	and	CE	courses	emphasize	abstraction
§ Abstract	data	types
§ Processes,	Files

¢ These	abstractions	have	limits
§ Especially	in	the	presence	of	bugs
§ Need	to	understand	details	of	underlying	implementations

¢ Useful	outcomes
§ Become	more	effective	programmers

§ Able	to	find	and	eliminate	bugs	efficiently
§ Able	to	understand	and	tune	for	program	performance

§ Prepare	for	later	“systems”	classes	in	CS	&	ECE
§ Compilers,	Operating	Systems,	Networks,	Architecture

6

Carnegie Mellon

Great	Reality	#1:	
Ints are	not	Integers,	Floats	are	not	Reals

¢ Example	1:	Is	x2 ≥	0?

§ Float’s:	Yes!

§ Int’s:
§ 40000	*	40000		➙ 1600000000
§ 50000	*	50000		➙ ??

¢ Example	2:	Is	(x +	y)	+	z =		x +	(y +	z)?
§ Unsigned	&	Signed	Int’s:	Yes!
§ Float’s:

§ (1e20	+	-1e20)	+	3.14	-->	3.14
§ 1e20	+	(-1e20	+	3.14)	-->	??

Source:	xkcd.com/571

7

Carnegie Mellon

Code	Security	Example
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

¢ Similar	to	code	found	in	FreeBSD’s	implementation	of	
getpeername

¢ There	are	legions	of	smart	people	trying	to	find	vulnerabilities	
in	programs

8

Carnegie Mellon

Typical	Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

9

Carnegie Mellon

Malicious	Usage

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);
. . .

}

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

10

Carnegie Mellon

Computer	Arithmetic

¢ Does	not	generate	random	values
§ Arithmetic	operations	have	important	mathematical	properties

¢ Cannot	assume	all	“usual”	mathematical	properties
§ Due	to	finiteness	of	representations
§ Integer	operations	satisfy	“ring”	properties

§ Commutativity,	associativity,	distributivity
§ Floating	point	operations	satisfy	“ordering”	properties

§ Monotonicity,	values	of	signs

¢ Observation
§ Need	to	understand	which	abstractions	apply	in	which	contexts
§ Important	issues	for	compiler	writers	and	serious	application	programmers

11

Carnegie Mellon

Great	Reality	#2:	
You’ve	Got	to	Know	Assembly
¢ Chances	are,	you’ll	never	write	programs	in	assembly
§ Compilers	are	much	better	&	more	patient	than	you	are

¢ But:	Understanding	assembly	is	key	to	machine-level	execution	
model
§ Behavior	of	programs	in	presence	of	bugs

§ High-level	language	models	break	down
§ Tuning	program	performance

§ Understand	optimizations	done	/	not	done	by	the	compiler
§ Understanding	sources	of	program	inefficiency

§ Implementing	system	software
§ Compiler	has	machine	code	as	target
§ Operating	systems	must	manage	process	state

§ Creating	/	fighting	malware
§ x86	assembly	is	the	language	of	choice!

12

Carnegie Mellon

Assembly	Code	Example

¢ Time	Stamp	Counter
§ Special	64-bit	register	in	Intel-compatible	machines
§ Incremented	every	clock	cycle
§ Read	with	rdtsc	instruction

¢ Application
§ Measure	time	(in	clock	cycles)	required	by	procedure

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

13

Carnegie Mellon

Code	to	Read	Counter

¢ Write	small	amount	of	assembly	code	using	GCC’s	asm	facility
¢ Inserts	assembly	code	into	machine	code	generated	by	
compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

14

Carnegie Mellon

Great	Reality	#3:	Memory	Matters
Random	Access	Memory	Is	an	Unphysical	Abstraction

¢ Memory	is	not	unbounded
§ It	must	be	allocated	and	managed
§ Many	applications	are	memory	dominated

¢ Memory	referencing	bugs	especially	pernicious
§ Effects	are	distant	in	both	time	and	space

¢ Memory	performance	is	not	uniform
§ Cache	and	virtual	memory	effects	can	greatly	affect	program	performance
§ Adapting	program	to	characteristics	of	memory	system	can	lead	to	major	
speed	improvements

15

Carnegie Mellon

Memory	Referencing	Bug	Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14, then segmentation fault

¢ Result	is	architecture	specific

16

Carnegie Mellon

Memory	Referencing	Bug	Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14, then segmentation fault

Location	accessed	by	
fun(i)

Explanation: Saved State 4
d7 ... d4 3
d3 ... d0 2
a[1] 1
a[0] 0

17

Carnegie Mellon

Memory	Referencing	Errors

¢ C	and	C++	do	not	provide	any	memory	protection
§ Out	of	bounds	array	references
§ Invalid	pointer	values
§ Abuses	of	malloc/free

¢ Can	lead	to	nasty	bugs
§ Whether	or	not	bug	has	any	effect	depends	on	system	and	compiler
§ Action	at	a	distance

§ Corrupted	object	logically	unrelated	to	one	being	accessed
§ Effect	of	bug	may	be	first	observed	long	after	it	is	generated

¢ How	can	I	deal	with	this?
§ Program	in	Java,	Ruby	or	ML
§ Understand	what	possible	interactions	may	occur
§ Use	or	develop	tools	to	detect	referencing	errors	(e.g.	Valgrind)

18

Carnegie Mellon

Memory	System	Performance	Example

¢ Hierarchical	memory	organization
¢ Performance	depends	on	access	patterns

§ Including	how	step	through	multi-dimensional	array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21	times	slower
(Pentium	4)

19

Carnegie Mellon

The	Memory	Mountain

64
M

8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000

s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2 Size (bytes)

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

20

Carnegie Mellon

Great	Reality	#4:	There’s	more	to	
performance	than	asymptotic	complexity

¢ Constant	factors	matter	too!
¢ And	even	exact	op	count	does	not	predict	performance

§ Easily	see	10:1	performance	range	depending	on	how	code	written
§ Must	optimize	at	multiple	levels:	algorithm,	data	representations,	
procedures,	and	loops

¢ Must	understand	system	to	optimize	performance
§ How	programs	compiled	and	executed
§ How	to	measure	program	performance	and	identify	bottlenecks
§ How	to	improve	performance	without	destroying	code	modularity	and	
generality

21

Carnegie Mellon

Example	Matrix	Multiplication

¢ Standard	desktop	computer,	vendor	compiler,	using	optimization	flags
¢ Both	implementations	have	exactly the	same	operations	count	(2n3)
¢ What	is	going	on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

22

Carnegie Mellon

MMM	Plot:	Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

¢ Reason	for	20x:	Blocking	or	tiling,	loop	unrolling,	array	scalarization,	
instruction	scheduling,	search	to	find	best	choice

¢ Effect: fewer	register	spills, L1/L2	cache	misses, and	TLB	misses

23

Carnegie Mellon

Great	Reality	#5:
Computers	do	more	than	execute	programs
¢ They	need	to	get	data	in	and	out

§ I/O	system	critical	to	program	reliability	and	performance
§ Data	movement	is	currently	seen	as	our	biggest	obstacle	to	pushing	the	
high	end	of	computing	even	higher

¢ They	communicate	with	each	other	over	networks
§ Many	system-level	issues	arise	in	presence	of	network

§ Concurrent	operations	by	autonomous	processes
§ Coping	with	unreliable	media
§ Cross	platform	compatibility
§ Complex	performance	issues

24

Great	Reality	#6:
Security	Matters!!!	

¢ If	you	do	not	understand	this	level	of	programming,	you	are	at	
risk	to	introduce	security	holes	in	code	you	write

25

Required	Course	Textbook

¢ Randal	E.	Bryant	and	David	R.	O’Hallaron,	
§ “Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition”	
(CS:APP3e),	Prentice	Hall,	2015

§ Additional	student	materials	at:		http://csapp.cs.cmu.edu
§ NOTE:		BRAND	NEW	BOOK
§ Key	change	from	2nd edition:		focus	on	64-bit	architecture

§ “what’s	64-bit	architecture?”		- stay	tuned!	

¢ C	Programming	notes	available	online	for	free:		
https://www.eskimo.com/~scs/cclass/cclass.html

26

Getting	Help
¢ Class	Web	Page:	http://web.cecs.pdx.edu/~karavan/cs201
¢ We	will	transition	to	D2L
¢ TA	Office	Hours:		TBD
¢ Instructor	office	hour:		TBD
¢ Appointments	are	always	possible	modulo	my	schedule:
§ Email	me	and	list	some	different	days/times	you	can	meet
§ If	you	cannot	make	it	– please	email	and	let	me	know	if	at	all	possible

¢ “Open	Door”	Policy	
§ I	am	in	my	office	and	the	door	is	open	==	Welcome	!	
§ I	am	in	my	office	and	the	door	is	[latched]	shut	==	Oops!		Not	Now.

§ I	am	in	a	meeting	or	on	a	deadline	and	request	no	interruptions	other	
than	life	and	death	emergencies

27

Facilities

¢ Labs	and	homeworks will	use	the	Computer	
Science	Linux	Lab
¢ Remote	login:	ssh	myloginname@linuxlab.cs.pdx.edu
§ CS	tutors	sit	outside	of	the	lab	during	posted	hours
§ Small	library	of	relevant	books	maintained	by	tutors

¢ Homeworks
§ Homeworks will	be	tested	and	graded	on	the	Linux	Lab	
machines

§ We	do	not	have	the	resources	to	accommodate	your	
individual	personal	machine	setups	– please	test	your	work	
on	the	lab	machines	before	submitting

28

Timeliness

¢ Grace	days
§ 2 “free	passes”	(48	hours	each)	for	the	homeworks
§ Covers	scheduling	crunch,	out-of-town	trips,	illnesses,	minor	setbacks
§ Murphy	Says:		Save	them	until	late	in	the	term!

¢ Lateness	penalties
§ Once	free	passes(s)	used	up,	receive	a	score	of	0
§ TURN	IN	WHATEVER	YOU	HAVE		!	

¢ Free	Lunch
§ Your	homework	score	is	computed	using	the	BEST	7	of	8	homeworks

¢ Advice
§ Once	you	start	running	late,	it’s	really	hard	to	catch	up
§ 8 Weeks	goes	by	VERYVERY	quickly

29

Cheating
¢ What	is	cheating?
§ Sharing	code:	by	copying,	retyping,	looking	at,	or	supplying	a	file
§ Coaching:	helping	your	friend	to	write	a	lab,	line	by	line
§ Copying	code	from	previous	course	or	from	elsewhere	on	WWW

§ Only	allowed	to	use	code	we	supply
§ Looking	at	anyone	else’s	exam	or	showing	anyone	yours,	in	the	exam	room
§ Posting	in	any	form	or	forum	the	homework	or	exam	answers

¢ What	is	NOT	cheating?
§ Explaining	how	to	use	systems	or	tools	or	getting	that	explained
§ Helping	others	with	high-level	design	issues	or	getting	that	help
§ Getting	help	from	the	tutors or	Course	Expert

¢ Murphy	Says:
§ Tends	to	happen	when	you’re	tired,	behind,	and	worried	– so	stay	on	track
§ 2	min	rule:		after	an	explanation,	2mins	before	hands	are	back	on	keyboard
§ “Why	are	we	spending	all	this	time	talking	about	cheating?	“	

§ Because	it	happens	EVERY	YEAR	and	if	it	happens	to	you,	you	will	FAIL

30

Other	Rules	of	the	CS	201	Classroom

¢ Laptops:	permitted

¢ Electronic	communications:	forbidden
§ No	email,	instant	messaging,	cell	phone	calls,	etc
§ You	will	be	asked	to	leave
§ Why?		This	is	a	Learning	Environment
§ OK- looking	things	up	as	we	go,	electronic	textbook,	etc.
§ OK	– asking	questions	in	the	class	

¢ Note:		Some	students	have	been	granted	specific	permission	to	
record	the	lectures.		Without	permission	it’s	a	no-no.

31

HW	#1	Part	1
¢ The	Full	Homework	will	be	available	on	Thursday	(April	4)	
¢ But	it’s	a	good	idea	to	get	started
1. Readings:

B&O	[textbook]	chapter	1
Steve	Summit’s	C	Programming	Notes	Chapter	1:

https://www.eskimo.com/~scs/cclass/notes/top.html
1) Hands	on:
§ Online	Tutorial	(SKIP	105.7):		http://pages.cs.wisc.edu/~remzi/OSTEP/lab-
tutorial.pdf
§ Focus	on	your	initial	goals:		to	be	able	to	write,	compile,	run	C	Programs	
on	the	PSU	Linux	Lab	machines

§ The	Key:		Learn	a	command	line	editor:		vim	or	emacs

32

Carnegie Mellon

Welcome	
and	Enjoy!	

