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Welcome	to	Café	201
(also	known	as	CS	201	Computer Systems	

Programming)

Spring	2019
Course	Introduction

Instructor: Dr.	Karen	L.	Karavanic
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Hello, World
#include <stdio.h>

int main() 
{

printf("hello, world\n");
}
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Course	Theme:
Abstraction	Is	Good	But	Don’t	Forget	Reality

¢ Most	CS	and	CE	courses	emphasize	abstraction
§ Abstract	data	types
§ Processes,	Files

¢ These	abstractions	have	limits
§ Especially	in	the	presence	of	bugs
§ Need	to	understand	details	of	underlying	implementations

¢ Useful	outcomes
§ Become	more	effective	programmers

§ Able	to	find	and	eliminate	bugs	efficiently
§ Able	to	understand	and	tune	for	program	performance

§ Prepare	for	later	“systems”	classes	in	CS	&	ECE
§ Compilers,	Operating	Systems,	Networks,	Architecture
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Great	Reality	#1:	
Ints are	not	Integers,	Floats	are	not	Reals

¢ Example	1:	Is	x2 ≥	0?

§ Float’s:	Yes!

§ Int’s:
§ 40000	*	40000		➙ 1600000000
§ 50000	*	50000		➙ ??

¢ Example	2:	Is	(x +	y)	+	z =		x +	(y +	z)?
§ Unsigned	&	Signed	Int’s:	Yes!
§ Float’s:

§ (1e20	+	-1e20)	+	3.14	-->	3.14
§ 1e20	+	(-1e20	+	3.14)	-->	??

Source:	xkcd.com/571



7

Carnegie Mellon

Code	Security	Example
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

¢ Similar	to	code	found	in	FreeBSD’s	implementation	of	
getpeername

¢ There	are	legions	of	smart	people	trying	to	find	vulnerabilities	
in	programs
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Typical	Usage
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}
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Malicious	Usage

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);
. . .

}

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}
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Computer	Arithmetic

¢ Does	not	generate	random	values
§ Arithmetic	operations	have	important	mathematical	properties

¢ Cannot	assume	all	“usual”	mathematical	properties
§ Due	to	finiteness	of	representations
§ Integer	operations	satisfy	“ring”	properties

§ Commutativity,	associativity,	distributivity
§ Floating	point	operations	satisfy	“ordering”	properties

§ Monotonicity,	values	of	signs

¢ Observation
§ Need	to	understand	which	abstractions	apply	in	which	contexts
§ Important	issues	for	compiler	writers	and	serious	application	programmers
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Great	Reality	#2:	
You’ve	Got	to	Know	Assembly
¢ Chances	are,	you’ll	never	write	programs	in	assembly
§ Compilers	are	much	better	&	more	patient	than	you	are

¢ But:	Understanding	assembly	is	key	to	machine-level	execution	
model
§ Behavior	of	programs	in	presence	of	bugs

§ High-level	language	models	break	down
§ Tuning	program	performance

§ Understand	optimizations	done	/	not	done	by	the	compiler
§ Understanding	sources	of	program	inefficiency

§ Implementing	system	software
§ Compiler	has	machine	code	as	target
§ Operating	systems	must	manage	process	state

§ Creating	/	fighting	malware
§ x86	assembly	is	the	language	of	choice!
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Assembly	Code	Example

¢ Time	Stamp	Counter
§ Special	64-bit	register	in	Intel-compatible	machines
§ Incremented	every	clock	cycle
§ Read	with	rdtsc	instruction

¢ Application
§ Measure	time	(in	clock	cycles)	required	by	procedure

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);
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Code	to	Read	Counter

¢ Write	small	amount	of	assembly	code	using	GCC’s	asm	facility
¢ Inserts	assembly	code	into	machine	code	generated	by	
compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.  

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"   
: "=r" (*hi), "=r" (*lo) 
:
: "%edx", "%eax");

}
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Great	Reality	#3:	Memory	Matters
Random	Access	Memory	Is	an	Unphysical	Abstraction

¢ Memory	is	not	unbounded
§ It	must	be	allocated	and	managed
§ Many	applications	are	memory	dominated

¢ Memory	referencing	bugs	especially	pernicious
§ Effects	are	distant	in	both	time	and	space

¢ Memory	performance	is	not	uniform
§ Cache	and	virtual	memory	effects	can	greatly	affect	program	performance
§ Adapting	program	to	characteristics	of	memory	system	can	lead	to	major	
speed	improvements
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Memory	Referencing	Bug	Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0)  ➙ 3.14
fun(1)  ➙ 3.14
fun(2)  ➙ 3.1399998664856
fun(3)  ➙ 2.00000061035156
fun(4)  ➙ 3.14, then segmentation fault

¢ Result	is	architecture	specific
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Memory	Referencing	Bug	Example
double fun(int i)
{

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0)  ➙ 3.14
fun(1)  ➙ 3.14
fun(2)  ➙ 3.1399998664856
fun(3)  ➙ 2.00000061035156
fun(4)  ➙ 3.14, then segmentation fault

Location	accessed	by	
fun(i)

Explanation: Saved State 4
d7 ... d4 3
d3 ... d0 2
a[1] 1
a[0] 0
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Memory	Referencing	Errors

¢ C	and	C++	do	not	provide	any	memory	protection
§ Out	of	bounds	array	references
§ Invalid	pointer	values
§ Abuses	of	malloc/free

¢ Can	lead	to	nasty	bugs
§ Whether	or	not	bug	has	any	effect	depends	on	system	and	compiler
§ Action	at	a	distance

§ Corrupted	object	logically	unrelated	to	one	being	accessed
§ Effect	of	bug	may	be	first	observed	long	after	it	is	generated

¢ How	can	I	deal	with	this?
§ Program	in	Java,	Ruby	or	ML
§ Understand	what	possible	interactions	may	occur
§ Use	or	develop	tools	to	detect	referencing	errors	(e.g.	Valgrind)
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Memory	System	Performance	Example

¢ Hierarchical	memory	organization
¢ Performance	depends	on	access	patterns

§ Including	how	step	through	multi-dimensional	array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21	times	slower
(Pentium	4)



19

Carnegie Mellon

The	Memory	Mountain
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Great	Reality	#4:	There’s	more	to	
performance	than	asymptotic	complexity

¢ Constant	factors	matter	too!
¢ And	even	exact	op	count	does	not	predict	performance

§ Easily	see	10:1	performance	range	depending	on	how	code	written
§ Must	optimize	at	multiple	levels:	algorithm,	data	representations,	
procedures,	and	loops

¢ Must	understand	system	to	optimize	performance
§ How	programs	compiled	and	executed
§ How	to	measure	program	performance	and	identify	bottlenecks
§ How	to	improve	performance	without	destroying	code	modularity	and	
generality
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Example	Matrix	Multiplication

¢ Standard	desktop	computer,	vendor	compiler,	using	optimization	flags
¢ Both	implementations	have	exactly the	same	operations	count	(2n3)
¢ What	is	going	on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)
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MMM	Plot:	Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

¢ Reason	for	20x:	Blocking	or	tiling,	loop	unrolling,	array	scalarization,	
instruction	scheduling,	search	to	find	best	choice

¢ Effect: fewer	register	spills, L1/L2	cache	misses, and	TLB	misses
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Great	Reality	#5:
Computers	do	more	than	execute	programs
¢ They	need	to	get	data	in	and	out

§ I/O	system	critical	to	program	reliability	and	performance
§ Data	movement	is	currently	seen	as	our	biggest	obstacle	to	pushing	the	
high	end	of	computing	even	higher

¢ They	communicate	with	each	other	over	networks
§ Many	system-level	issues	arise	in	presence	of	network

§ Concurrent	operations	by	autonomous	processes
§ Coping	with	unreliable	media
§ Cross	platform	compatibility
§ Complex	performance	issues
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Great	Reality	#6:
Security	Matters!!!	

¢ If	you	do	not	understand	this	level	of	programming,	you	are	at	
risk	to	introduce	security	holes	in	code	you	write
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Required	Course	Textbook

¢ Randal	E.	Bryant	and	David	R.	O’Hallaron,	
§ “Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition”	
(CS:APP3e),	Prentice	Hall,	2015

§ Additional	student	materials	at:		http://csapp.cs.cmu.edu
§ NOTE:		BRAND	NEW	BOOK
§ Key	change	from	2nd edition:		focus	on	64-bit	architecture

§ “what’s	64-bit	architecture?”		- stay	tuned!	

¢ C	Programming	notes	available	online	for	free:		
https://www.eskimo.com/~scs/cclass/cclass.html
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Getting	Help
¢ Class	Web	Page:	http://web.cecs.pdx.edu/~karavan/cs201
¢ We	will	transition	to	D2L
¢ TA	Office	Hours:		TBD
¢ Instructor	office	hour:		TBD
¢ Appointments	are	always	possible	modulo	my	schedule:
§ Email	me	and	list	some	different	days/times	you	can	meet
§ If	you	cannot	make	it	– please	email	and	let	me	know	if	at	all	possible

¢ “Open	Door”	Policy	
§ I	am	in	my	office	and	the	door	is	open	==	Welcome	!	
§ I	am	in	my	office	and	the	door	is	[latched]	shut	==	Oops!		Not	Now.

§ I	am	in	a	meeting	or	on	a	deadline	and	request	no	interruptions	other	
than	life	and	death	emergencies
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Facilities

¢ Labs	and	homeworks will	use	the	Computer	
Science	Linux	Lab
¢ Remote	login:	ssh	myloginname@linuxlab.cs.pdx.edu
§ CS	tutors	sit	outside	of	the	lab	during	posted	hours
§ Small	library	of	relevant	books	maintained	by	tutors

¢ Homeworks
§ Homeworks will	be	tested	and	graded	on	the	Linux	Lab	
machines

§ We	do	not	have	the	resources	to	accommodate	your	
individual	personal	machine	setups	– please	test	your	work	
on	the	lab	machines	before	submitting
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Timeliness

¢ Grace	days
§ 2 “free	passes”	(48	hours	each)	for	the	homeworks
§ Covers	scheduling	crunch,	out-of-town	trips,	illnesses,	minor	setbacks
§ Murphy	Says:		Save	them	until	late	in	the	term!

¢ Lateness	penalties
§ Once	free	passes(s)	used	up,	receive	a	score	of	0
§ TURN	IN	WHATEVER	YOU	HAVE		!	

¢ Free	Lunch
§ Your	homework	score	is	computed	using	the	BEST	7	of	8	homeworks

¢ Advice
§ Once	you	start	running	late,	it’s	really	hard	to	catch	up
§ 8 Weeks	goes	by	VERYVERY	quickly
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Cheating
¢ What	is	cheating?
§ Sharing	code:	by	copying,	retyping,	looking	at,	or	supplying	a	file
§ Coaching:	helping	your	friend	to	write	a	lab,	line	by	line
§ Copying	code	from	previous	course	or	from	elsewhere	on	WWW

§ Only	allowed	to	use	code	we	supply
§ Looking	at	anyone	else’s	exam	or	showing	anyone	yours,	in	the	exam	room
§ Posting	in	any	form	or	forum	the	homework	or	exam	answers

¢ What	is	NOT	cheating?
§ Explaining	how	to	use	systems	or	tools	or	getting	that	explained
§ Helping	others	with	high-level	design	issues	or	getting	that	help
§ Getting	help	from	the	tutors or	Course	Expert

¢ Murphy	Says:
§ Tends	to	happen	when	you’re	tired,	behind,	and	worried	– so	stay	on	track
§ 2	min	rule:		after	an	explanation,	2mins	before	hands	are	back	on	keyboard
§ “Why	are	we	spending	all	this	time	talking	about	cheating?	“	

§ Because	it	happens	EVERY	YEAR	and	if	it	happens	to	you,	you	will	FAIL
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Other	Rules	of	the	CS	201	Classroom

¢ Laptops:	permitted

¢ Electronic	communications:	forbidden
§ No	email,	instant	messaging,	cell	phone	calls,	etc
§ You	will	be	asked	to	leave
§ Why?		This	is	a	Learning	Environment
§ OK- looking	things	up	as	we	go,	electronic	textbook,	etc.
§ OK	– asking	questions	in	the	class	

¢ Note:		Some	students	have	been	granted	specific	permission	to	
record	the	lectures.		Without	permission	it’s	a	no-no.
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HW	#1	Part	1
¢ The	Full	Homework	will	be	available	on	Thursday	(April	4)	
¢ But	it’s	a	good	idea	to	get	started
1. Readings:

B&O	[textbook]	chapter	1
Steve	Summit’s	C	Programming	Notes	Chapter	1:

https://www.eskimo.com/~scs/cclass/notes/top.html
1) Hands	on:
§ Online	Tutorial	(SKIP	105.7):		http://pages.cs.wisc.edu/~remzi/OSTEP/lab-
tutorial.pdf
§ Focus	on	your	initial	goals:		to	be	able	to	write,	compile,	run	C	Programs	
on	the	PSU	Linux	Lab	machines

§ The	Key:		Learn	a	command	line	editor:		vim	or	emacs
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Welcome	
and	Enjoy!	


