Welcome to Café 201
(also known as CS 201 Computer Systems
Programming)

Spring 2019
Course Introduction

Instructor: Dr. Karen L. Karavanic

Portland State

IIIIIIIIII

int main()

{

hello.c

Hello, World

#include <stdio.h>

printf("hello, world\n");

\ 4

Source

Pre-
processor

(cpp)

hello.1

program
(text)

Modified
source
program
(text)

[
»

Compiler
(ccl)

hello.s

Assembly
program
(text)

[
»

Assembler

(as)

printf.o

L,

hello.o

[
>

Relocatable

Linker
(1d)

hello

object
programs
(binary)

[
»

Executable
object
program
(binary)

PC <:| ALU

§Systgm bus Memory bus

Bus interface

...

/O
bridge

¢ i

ﬁ

> Main
memory

<

USB

controller

MouseKeyboard

7

Graphics
adapter

Display

I/O bus \ ‘

Expansion slots for

other devices such

Disk

contmoller

as network adapters

\ 4

Disk

hello executable
stored on disk

PC

Bus interface

...

|
v

Main "Thello,world\n"

MeéMmOoryn.iio code

<

USB

controller

MouseKeyboard

<7

Graphics
adapter

Display

I/O bus

Expansion slots for

other devices such

as network adapters

ello executable
stored on disk

Course Theme:

Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types

" Processes, Files

m These abstractions have limits
= Especially in the presence of bugs
= Need to understand details of underlying implementations

m Useful outcomes
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
= Prepare for later “systems” classes in CS & ECE
= Compilers, Operating Systems, Networks, Architecture

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1: Is x2 > 0?

Joee 2. e 1306... 1,307... | |...32,7%67...-32,%8...| | -32767...-32,%6...
" Float’s: Yes! o s o o
32 5D ”W%ﬁg S
B | T P
" Int’s: ﬁ

= 40000 * 40000 => 1600000000
= 50000 * 50000 = ??

m Example 2:Is(x+y)+z = x+(y +2)?
= Unsigned & Signed Int’s: Yes!
= Float’s:
= (1e20 +-1e20) +3.14 -->3.14
= 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571 6

Carnegie Mellon

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf|[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find vulnerabilities
in programs

Carnegie Mellon

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () ({
char mybuf [MSIZE] ;
copy from kernel (mybuf, MSIZE) ;
printf (“$s\n”, mybuf) ;

Carnegie Mellon

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, -MSIZE) ;

Carnegie Mellon

Computer Arithmetic

m Does not generate random values

= Arithmetic operations have important mathematical properties

m Cannot assume all “usual” mathematical properties
= Due to finiteness of representations
" Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation
" Need to understand which abstractions apply in which contexts
= Important issues for compiler writers and serious application programmers

10

Great Reality #2:

You've Got to Know Assembly

m Chances are, you’ll never write programs in assembly

= Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model
= Behavior of programs in presence of bugs
= High-level language models break down
"= Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
" Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware

= x86 assembly is the language of choice!
11

Carnegie Mellon

Assembly Code Example

m Time Stamp Counter

= Special 64-bit register in Intel-compatible machines
" Incremented every clock cycle

= Read with rdtsc instruction
m Application

= Measure time (in clock cycles) required by procedure

double t;

start counter();

P();

t = get _counter();

printf ("P required %f clock cycles\n", t);

12

Carnegie Mellon

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility
m Inserts assembly code into machine code generated by

compiler
static unsigned cyc hi = 0;
static unsigned cyc lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access_counter (unsigned *hi, unsigned *1lo)

{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
Ne=p (*hl) , Ne=p" (*10)

"%edx", "%eax");

13

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
" |t must be allocated and managed
= Many applications are memory dominated

m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

m Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

14

Carnegie Mellon

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) = 3.14

fun (1) = 3.14

fun(2) =» 3.1399998664856

fun(3) =» 2.00000061035156

fun(4) = 3.14, then segmentation fault

m Result is architecture specific

15

Carnegie Mellon

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) = 3.14
fun(l) = 3.14
fun(2) = 3.1399998664856
fun(3) = 2.0000006103515¢6
fun(4) = 3.14, then segmentation fault
Explanation: |Saved State| 47
d7 ... d4 3
d3 . do 9 Locatlc?n accessed by
fun (1)
al[1] 1
CII:@] 0 _

16

Carnegie Mellon

Memory Referencing Errors

m C and C++ do not provide any memory protection
= Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby or ML
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

17

Carnegie Mellon

Memory System Performance Example

vold copyij(int src[2048][2048],
int dst[2048][2048])
{

int 1,7;
for (1 =0; 1
for (3 = 0;
dst[1][3]

2048 ; 1++)
< 2048; j++)
src[i]l3];

I« A

vold copyji(int

{

int

int 1,7;
for (J = 0; 7

~. for (1 = 0;

}

dst[i1][3]

src[2048][2048],
dst[2048][2048])

2048; J++)
< 2048; 1++)
src[i]l3];

n = A

m Hierarchical memory organization

21 times slower

m Performance depends on access patterns
" Including how step through multi-dimensional array

(Pentium 4)

18

Carnegie Mellon

The Memory Mountain

Read throughput (MB/s)

7000 1/

Copyij

6000 -

5000 -

4000 -

3000 -

2000

1000 -

s1
s3
s5
s7
s9

Stride (x8 bytes)

s11

L3

Mem

s13

s15

L1

L2

copyji

s32
64M
8M
1M
128K
16K

Intel Core i7

2.67 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

2K

Size (bytes)

19

Great Reality #4: There’s more to

performance than asymptotic complexity

m Constant factors matter too!
m And even exact op count does not predict performance

= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

20

Carnegie Mellon

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

Gflop/s
50000
mlff— —
37500 Best code (K. Goto)
25000
12500
Triple loop
0 w
0 2,250 4,500 6,750 9,000

matnx size

m Standard desktop computer, vendor compiler, using optimization flags
m Both implementations have exactly the same operations count (2n3)

m What is going on?
21

Carnegie Mellon

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50000
el - —
37500
Multiple threads: 4x
25000
12500 ‘
A Vector instructions: 4x
0 ' e " Memory hierarchy and other optimizations: 20x
2,250 4,500 6,750 9,000

matrix size
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

m Effect: fewer register spills, L1/L2 cache misses, and TLB misses N

Great Reality #5:

Computers do more than execute programs

m They need to get data in and out

= |/O system critical to program reliability and performance

= Data movement is currently seen as our biggest obstacle to pushing the
high end of computing even higher

m They communicate with each other over networks
= Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

23

Great Reality #6:
Security Matters!!!

m If you do not understand this level of programming, you are at
risk to introduce security holes in code you write

24

Required Course Textbook

m Randal E. Bryant and David R. O’Hallaron,

= “Computer Systems: A Programmer’s Perspective, Third Edition”
(CS:APP3e), Prentice Hall, 2015

= Additional student materials at: http://csapp.cs.cmu.edu
= NOTE: BRAND NEW BOOK
= Key change from 2"? edition: focus on 64-bit architecture

= “what’s 64-bit architecture?” - stay tuned!

m C Programming notes available online for free:
https://www.eskimo.com/~scs/cclass/cclass.html

25

Getting Help

m Class Web Page: http://web.cecs.pdx.edu/~karavan/cs201

m We will transition to D2L
m TA Office Hours: TBD
m Instructor office hour: TBD

m Appointments are always possible modulo my schedule:
" Email me and list some different days/times you can meet
= |f you cannot make it — please email and let me know if at all possible

m “Open Door” Policy
= | am in my office and the door is open == Welcome !

"= | am in my office and the door is [latched] shut == Oops! Not Now.

= | am in a meeting or on a deadline and request no interruptions other
than life and death emergencies

26

Facilities

m Labs and homeworks will use the Computer
Science Linux Lab

m Remote login: ssh myloginname@linuxlab.cs.pdx.edu

= CS tutors sit outside of the lab during posted hours
= Small library of relevant books maintained by tutors

m Homeworks

" Homeworks will be tested and graded on the Linux Lab
machines

= We do not have the resources to accommodate your
individual personal machine setups — please test your work
on the lab machines before submitting

27

Timeliness

m Grace days
= 2 “free passes” (48 hours each) for the homeworks
= Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
= Murphy Says: Save them until late in the term!
m Lateness penalties
" Once free passes(s) used up, receive a score of O
= TURN IN WHATEVER YOU HAVE !
m Free Lunch
" Your homework score is computed using the BEST 7 of 8 homeworks
m Advice

= Once you start running late, it’s really hard to catch up
= 8 Weeks goes by VERYVERY quickly

28

Cheatin g Portland State

UNIVERSITY

m What is cheating?
= Sharing code: by copying, retyping, looking at, or supplying a file
= Coaching: helping your friend to write a lab, line by line
= Copying code from previous course or from elsewhere on WWW
= Only allowed to use code we supply
" Looking at anyone else’s exam or showing anyone yours, in the exam room
" Posting in any form or forum the homework or exam answers

m What is NOT cheating?

= Explaining how to use systems or tools or getting that explained
= Helping others with high-level design issues or getting that help
= Getting help from the tutors or Course Expert
m Murphy Says:
" Tends to happen when you’re tired, behind, and worried — so stay on track
= 2 minrule: after an explanation, 2mins before hands are back on keyboard
= “Why are we spending all this time talking about cheating? “
= Because it happens EVERY YEAR and if it happens to you, you will FAIL

29

Other Rules of the CS 201 Classroom

m Laptops: permitted

m Electronic communications: forbidden
= No email, instant messaging, cell phone calls, etc
" You will be asked to leave
= Why? Thisis a Learning Environment
= OK- looking things up as we go, electronic textbook, etc.
" OK —asking questions in the class

m Note: Some students have been granted specific permission to
record the lectures. Without permission it’s a no-no.

Portland State

UNIVERSITY

HW #1 Part 1

m The Full Homework will be available on Thursday (April 4)
m But it’s a good idea to get started
1. Readings:
B&O [textbook] chapter 1
Steve Summit’s C Programming Notes Chapter 1:
https://www.eskimo.com/~scs/cclass/notes/top.html

1) Hands on:

® Online Tutorial (SKIP 105.7): http://pages.cs.wisc.edu/~remzi/OSTEP/lab-
tutorial.pdf

= Focus on your initial goals: to be able to write, compile, run C Programs
on the PSU Linux Lab machines

" The Key: Learn a command line editor: vim or emacs

31

Carnegie Mellon

Welcome
and Enjoy!

32

