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World Wide Web

TCP/IP class
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outline
◆ intro - the big picture (elephant in breadbox)
◆ HTML - Hypertext Markup Language

– we can hopefully ignore this as you know it

◆ HTTP - Hypertext Transfer Protocol
◆ etc. (short, but there is a lot of etc)

– elephant makes room for rhino, hippo, and giraffe
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intro
◆ what is the World Wide Web?
◆ an information system that links data from different

protocols under one umbrella
◆ it allows pages to be linked together so that you can jump

from one to another in a non-continuous way (hypertext
over the Internet) (...end of linear thinking ...)

◆ it allows display of graphics (2D images) plus small doses
of audio and even video -- tolerates heterogeneous
datatypes and very-well may slice bread

◆ no, it is NOT the Internet, just one more meta-network.  It
is a loose collection of technologies though.
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key technologies/buzzwords
◆ html and http
◆ html - Hypertext-markup-language

– you probably know some of this (or all?)

◆ http - Hypertext-transfer-protocol
– end to end transport on top of TCP
– uses MIME like SMTP/email, FTP-like error messages
– http used to transfer html and/or other file types

◆ URLs - addresses
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history in 1 slide
◆ 1989, Tim Berners-Lee at CERN (European Laboratory

for Particle Physics) proposed World Wide Web protocols
◆ W3 consortium now “leading” effort, includes CERN,

MIT, INRIA,  see http://www.w3c.org
◆ early browser called Mosaic, done at NCSA (National

Center for Supercomputing Applications), 1993
◆ then netscape,  then browser wars (netscape vs. IE)
◆ plus a blizzard of possible add-on technologies to extend

the web on the client or server sides
– java/CGI&perl/JavaScript/dynamic html/plugs-ins, blah, blah
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this slide is wrong? - standards
◆ html 4.0, see http://www.w3.org for updates

– ORA book on HTTP, 3rd edition, 1998
– not the whole picture of course given netscape

vs IE hooks
◆ rfc2616, http/1.1
◆ many other possible documents including

security-related (SSL) + email/MIME
RFCS
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intro - concepts
◆ web client supports > 1 protocol for fetching

documents,  HTTP (native web), ftp, gopher,
USENET, WAIS, telnet(?), etc.

◆ HTML page == formatted ( graphics+text+links )
◆ key here is tying graphics and text together,

along with hypertext links; i.e.., a discontinuous
jump to other material anywhere on net

◆ link = to ftp, to telnet, to more HTML hypertext,
to arbitrary program at web server
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basic client/server architecture

browser

http get file/tcp to port 80
web server/
httpd

netscape/IE
as CLIENT

read file from
file system

~jrb/index.html
+ jrb.png

MIME type + .html/.png
file to client tcp port

blah
blah, blah

web servers serve
html, web browsers
may do more than  http/html
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hypertext links - URLS
◆ a link will normally include a WWW network address for

a page or something...
◆ called an URL, Uniform Resource Locator
◆ syntax = protocol://dns name[:tcp port]/file

◆ examples:
http://www.foo.com/index.html
ftp://zymurgy.cs.pdx.edu
file:/some/where/local.txt
telnet: //somewhere.mud.edu:8000
gopher://some.gopher.server.edu/
news:alt.fan.cecil-adams  (note: no dns name)
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this is a GREAT idea
◆ in the history of GREAT ideas ...
◆ and so simple
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web browser may speak more
than http; e.g., ftp client too

ftp.cs.pdx.edu/foo.txt

ftp 
server

HTTP
server

web
client

.html
docs

www.cs.pdx.edu

HTTP protocol

ftp
protocol

news
server

nntp

and it may do email, make coffee, 
change baby diapers, etc... 
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file format extensibility
◆ web has native set of file formats including

HTML docs, and graphics but clients and servers
can be extended to handle other file formats (and
other code ...)

◆ fetch of .ps file may invoke GNU ghostscript
postscript viewer

◆ client/server communicate file format info via
mail MIME encoding format

◆ client  may be taught to invoke external
application to handle new format
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file heterogeneity
◆ MIME encodings exist for many kinds of

data or can make new one up on fly
◆ e.g., windows pc netscape viewer can be

taught to invoke powerpoint for “.ppt” files
◆ can invoke audio/video viewers for sound

and video files
◆ client may not know how to display a

server-side file, should just do download
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client/server code extensibility
◆ for many reasons, desirable to extend both

client/server functionality
– just a few examples of MANY possible technologies

◆ server-side
– common-gateway-interface with perl
– basically API between web server and some program to

pass parameters coming in over the web
– could invoke database OR whatever
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client-side extensibility
◆ may wish better gui/formatting than with

just plain HTML  OR
◆ wish to offload work from busy server

(server scalability issues)
◆ can use java/JavaScript, etc

– java can be used on server-side for that matter
◆ our goal here is NOT to explore these

issues (basically just http ...)
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intro - summary
◆ platform independent (HTML)
◆ protocol opaque (HTTP/ftp/gopher, etc.)
◆ ties docs together over net with hypertext

links (HTML/links)
◆ 2-d graphics (HTML)
◆ can tolerate file heterogeneity (MIME)
◆ client/server extensions via various

programming languages/techniques
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intro - HTML
◆ HTML is a language that consists of ways of “marking

up” text and including pictures and links
◆ the markup symbols are called tags and are not displayed

at the viewer, rather they are interpreted as suggestions as
how to format the display

◆ clients format HTML as best they can - interpretation is
not the same from client to client

◆ tags include ways to include pictures in GIF/JPEG/png
format,  links,  paragraphs, lists, GUI objects like  buttons
and fill-in fields (forms)

◆ note: html really is NOT a networking protocol, just a
display language somewhat akin to postscript/NROFF/Tex



18Jim Binkley

HTML example
◆ <p> blah blah blah </p>

<p> blegh <b>foo!</b> </p>
◆ when we fetch and display the HTML:

blah blah blah

blegh foo!
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HTML <  SGML
◆ HTML is subset of SGML, Structured

Generalized Markup Language
◆ SGML used by US DOD/ISO developed
◆ software exists for SGML
◆ key is that HTML is simplified over SGML
◆ another key:  “trust the client”
◆ tradeoff:  platform independence versus

authoring control
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religion and html
◆ some want absolute control over how their

data is displayed,  want “physical” control
◆ some want platform independence, want

“logical” suggestions where client does best
job it can according to local circumstances

◆ <strong> Do It My Way! </strong>
◆ <b> Do It My Way! </b>
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some basic html tags
element type description
A container src/dest of link
B container bold text
LINK empty link from this doc
BR empty line break
H1...H6 container heading level
IMG empty image
LI empty list item
UL container unordered list
P empty paragraph
HR empty horizontal rule



22Jim Binkley

html example - the basic skeleton
<html>
<head>
<title>  Simple Web Page </title>
<link rev=“MADE” href=”mailto:jrb@cs.pdx.edu”>
</head>
<body>

                THE BODY GOES HERE

</body>
</html>
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html body - the inside
<h1> Simple Web Page - first level header </h1>
Here is a picture of my friend, Bev Kramlich, hope she never
hears about this. <P>
<img src=“bevk.png”> Bev Kramlich <P>
<h2 A Second level header. Plus Interesting Web Places to Visit
</h2>
<!-- <b> you didn’t see this </b> -->
<UL>
<LI>  <A href=“http://www.NCSA.uiuc.edu/SDG/People/robm/
sg.html”>A Typical System Administrator</A>
</UL>
<hr> <address> somebody@somewhere.org </address>



the
result...
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HTTP protocol - encapsulation

link           ip              tcp        http       data

http on top of tcp on top of IP

data == ASCII text, html, image, 
typed with MIME type
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HTTP - Hypertext Transfer
Protocol

◆ protocol web clients use to talk to “web” servers
(use http/fetch html)

◆ TCP-based, typically to server port 80
◆ simple request/response protocol
◆ client makes request, tells server what it can

handle for file types
◆ server responds with MIME type + data file, type

info usually gained from file suffix (foo.png)
◆ commands done in ASCII, errors in ASCII
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HTTP, cont.
◆ commands called “methods”,  but for the most

part, just a variation on “get file”
◆ server status and errors similar to error strings

found in ftp/email
– 200 - successful
– 300 - not done yet; e.g., 301 is moved permanently
– 400 - client error; e.g., 403 forbidden (server refuses)
– 500 - server error; 503 service unavailable at the

moment

◆ http 1.0 being replaced by http 1.1
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protocol overview
client server

TCP connect                              TCP/socket accept (port 80)
HTTP get file

            accept filetypes x, y, ...

       server status + header
                                                            info

       MIME type
       return file data

<read and display data>
TCP close

note: typically DNS before TCP ...
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HTTP 1.0 Methods (3)
◆ GET file - used for fetching most HTML documents,  file

is URL minus protocol/DNS portions.
– may use conditional if-Modified-Since time

get is done only if object is newer than time
– also used for one form of cgi-bin forms (“get”)

◆ HEAD file - get server-side header info about file but not
file itself.   Used for link test, cache test.

◆ POST cgi-bin/file - another way to do forms
– theoretically used to annotate/append/”post” message

or send record to database
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HTTP methods, cont.
◆ but other methods have been proposed; e.g.,
◆ PUT - put new URL and overwrite old one
◆ DELETE
◆ question is:  how to authorize remote file access;

i.e., how to make it secure so can do
PUT/DELETE, therefore less available

◆ original designers hoped that annotation of pages
would be possible (yellow-sticky analogy along
with hypertext) - unsuccessful idea at this point
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protocol trace - GET method
% telnet localhost 80
GET /foo.html HTTP/1.0 <cr> <cr>
HTTP/1.0 200 OK
Date: Tuesday, 22-Nov-94 18:10:58 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wednesday, 16-Nov-94 21:18:37 GMT
Content-length: 1115
<HTML> <TITLE> Joe FooBar’s Home ... </TITLE>
HTML...etc., etc...

request:
header:

body:
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server-side note (file mapping)
◆ in previous slide /foo.html is mapped on

server side to server documents file tree
◆ e.g., with server on UNIX, file tree maybe

/usr/local/httpd/htdocs/index.html
◆ GET /  -> root is mapped to index.html
◆ /foo.html would be in above htdocs

directory
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user home page - UNIX server
◆ on UNIX server, users may have home pages
◆ http://foo.org/~bob
◆ cd ~bob; mkdir public_html;
◆ make it world readable, chmod 664 public_html
◆ make your home page public_html/index.html
◆ make it world readable too
◆ so http://foo.org/~bob as URL is mapped to

http://foo.org/~bob/public_html/index.html by web server
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protocol trace - HEAD method
% telnet localhost 80

HEAD / HTTP/1.0 <cr> <cr>

HTTP/1.0 200 OK
Date: Tuesday, 22-Nov-94 18:13:45 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wednesday, 16-Nov-94-21:18:37 GMT
Content-length: 1115
<connection closed>
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some example MIME types

text/plain no formatting
text/html display as HTML (.html)
application/postscript fireup ps viewer (.ps)
application/powerpoint fireup powerpoint (.ppt)
image/jpeg jpeg image, inline display (.jpeg)
image/gif       gif image, inline display (.gif)
audio/basic    u-law format, fireup audio playback (.au)
video/mpeg   short “movie”, fireup mpeg player (.mpeg)
audio/x-midi MIDI file format (.mid)

MIME type viewer action
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MIME type extensibility
◆ on server, add types to server config file,

server associates file extension with MIME
type

◆ on client, teach client about local viewer
apps; e.g., windows NCSA mosaic.ini file
[Viewers]
TYPE10=“audio/x-midi”
audio/x-midi=“mplayer %ls”
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http 1.1 - just an introduction
◆ RFC  2616 - fundamental redefinition of

HTTP 1.0
– 176 pages long ...

◆ host request header - next slide
◆ must support persistant connections

– one TCP connection, many itty-bitty image
files

– not one connection per file
– good for TCP and good for the Inet
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host request
◆ client may send:

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.org

◆ (absolute URL or path) + host info (may include
port)

◆ may help eliminate wasteful binding of IP
addresses to ONE server, since this info is now
available to server (not buried in stack)

◆ can now bind multiple names to one IP address
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etc. section - a few more tricks
◆ proxies
◆ cgi-bin, quick overview
◆ security
◆ server-side scalability IS A PROBLEM
◆ there is no end to this ...

– use the web to learn about the web
– after all, WWW put the Internet on the map
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http - proxy extension
◆ Internet-capable server can act as proxy for clients not on

Internet - useful in firewall situations
◆ client simply sends http request with real URL

(ftp/http/gopher, whatever) encapsulated in http request
◆ server proxies as real client to internet
◆ sends info back to client
◆ server can cache results - useful for Internet-wide

efficiency
◆ can do gopher, http, ftp, can’t do telnet of course
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proxy picture

client

proxy 
server

remote
Inet server(http: ftp:)

ftp get

disk
cache
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cgi-bin: server-side extensibility
◆ cgi - Common Gateway Interface
◆ server-side app lives in /<server-path>/cgi-bin, invoked by

web server.
◆ can be coded in C, perl, C++, shellscript, java
◆ needs to be able to write to stdout, read environment

variables or stdin
◆ conventions exist (GET/POST) for passing parameters

from form to cgi applet
◆ cgi app can send more HTML back to client as output,

which may in turn have more form tags/cgi references
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forms + cgi-bin apps
◆ one can invoke “forms” on the client-side
◆ forms consist of a limited set of GUI objects, text

fill areas, fill-in fields, select menus, buttons,
◆ all expressed as HTML tags in the HTML src
◆ when form is complete, user “sends” via

embedded URL to backend cgi-bin app located at
http server

◆ server-side cgi-bin app processes form
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cgi-bin architecture

client
GET/POST + params

form output
web 
server

form
shown
here

cgi-bin
app

pipe
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security
◆ end/end exists, authentication and/or encryption
◆ plaintext password and/or IP address

authentication exist
– not ideal for the usual reasons

◆ SSL offers easy server-side encryption
– client-side authentication less-easy
– leads to issues of Public Key Infrastructure

◆ beware: download of code from strangers
◆ privacy issues; .e.,g., cookies which are ASCII

state stored by server at client
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server-side scalability
is challenging issue

◆ 1 server - 100 million clients want ONE PAGE
RIGHT NOW!

◆ intranet solutions include:
– round-robin DNS
– NAT-like remapping of local addresses, 1 to many

◆ Internet solutions
– try to determine “nearest” server and bounce request

(e.g., use BGP routing info)
– try to build large web of smart servers  and clever

rewrite/caching schemes at application layer
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