
1Jim Binkley

World Wide Web

TCP/IP class

2Jim Binkley

outline
◆ intro - the big picture (elephant in breadbox)
◆ HTML - Hypertext Markup Language

– we can hopefully ignore this as you know it

◆ HTTP - Hypertext Transfer Protocol
◆ etc. (short, but there is a lot of etc)

– elephant makes room for rhino, hippo, and giraffe

3Jim Binkley

intro
◆ what is the World Wide Web?
◆ an information system that links data from different

protocols under one umbrella
◆ it allows pages to be linked together so that you can jump

from one to another in a non-continuous way (hypertext
over the Internet) (...end of linear thinking ...)

◆ it allows display of graphics (2D images) plus small doses
of audio and even video -- tolerates heterogeneous
datatypes and very-well may slice bread

◆ no, it is NOT the Internet, just one more meta-network. It
is a loose collection of technologies though.

4Jim Binkley

key technologies/buzzwords
◆ html and http
◆ html - Hypertext-markup-language

– you probably know some of this (or all?)

◆ http - Hypertext-transfer-protocol
– end to end transport on top of TCP
– uses MIME like SMTP/email, FTP-like error messages
– http used to transfer html and/or other file types

◆ URLs - addresses

5Jim Binkley

history in 1 slide
◆ 1989, Tim Berners-Lee at CERN (European Laboratory

for Particle Physics) proposed World Wide Web protocols
◆ W3 consortium now “leading” effort, includes CERN,

MIT, INRIA, see http://www.w3c.org
◆ early browser called Mosaic, done at NCSA (National

Center for Supercomputing Applications), 1993
◆ then netscape, then browser wars (netscape vs. IE)
◆ plus a blizzard of possible add-on technologies to extend

the web on the client or server sides
– java/CGI&perl/JavaScript/dynamic html/plugs-ins, blah, blah

6Jim Binkley

this slide is wrong? - standards
◆ html 4.0, see http://www.w3.org for updates

– ORA book on HTTP, 3rd edition, 1998
– not the whole picture of course given netscape

vs IE hooks
◆ rfc2616, http/1.1
◆ many other possible documents including

security-related (SSL) + email/MIME
RFCS

7Jim Binkley

intro - concepts
◆ web client supports > 1 protocol for fetching

documents, HTTP (native web), ftp, gopher,
USENET, WAIS, telnet(?), etc.

◆ HTML page == formatted (graphics+text+links)
◆ key here is tying graphics and text together,

along with hypertext links; i.e.., a discontinuous
jump to other material anywhere on net

◆ link = to ftp, to telnet, to more HTML hypertext,
to arbitrary program at web server

8Jim Binkley

basic client/server architecture

browser

http get file/tcp to port 80
web server/
httpd

netscape/IE
as CLIENT

read file from
file system

~jrb/index.html
+ jrb.png

MIME type + .html/.png
file to client tcp port

blah
blah, blah

web servers serve
html, web browsers
may do more than http/html

9Jim Binkley

hypertext links - URLS
◆ a link will normally include a WWW network address for

a page or something...
◆ called an URL, Uniform Resource Locator
◆ syntax = protocol://dns name[:tcp port]/file

◆ examples:
http://www.foo.com/index.html
ftp://zymurgy.cs.pdx.edu
file:/some/where/local.txt
telnet: //somewhere.mud.edu:8000
gopher://some.gopher.server.edu/
news:alt.fan.cecil-adams (note: no dns name)

10Jim Binkley

this is a GREAT idea
◆ in the history of GREAT ideas ...
◆ and so simple

11Jim Binkley

web browser may speak more
than http; e.g., ftp client too

ftp.cs.pdx.edu/foo.txt

ftp
server

HTTP
server

web
client

.html
docs

www.cs.pdx.edu

HTTP protocol

ftp
protocol

news
server

nntp

and it may do email, make coffee,
change baby diapers, etc...

12Jim Binkley

file format extensibility
◆ web has native set of file formats including

HTML docs, and graphics but clients and servers
can be extended to handle other file formats (and
other code ...)

◆ fetch of .ps file may invoke GNU ghostscript
postscript viewer

◆ client/server communicate file format info via
mail MIME encoding format

◆ client may be taught to invoke external
application to handle new format

13Jim Binkley

file heterogeneity
◆ MIME encodings exist for many kinds of

data or can make new one up on fly
◆ e.g., windows pc netscape viewer can be

taught to invoke powerpoint for “.ppt” files
◆ can invoke audio/video viewers for sound

and video files
◆ client may not know how to display a

server-side file, should just do download

14Jim Binkley

client/server code extensibility
◆ for many reasons, desirable to extend both

client/server functionality
– just a few examples of MANY possible technologies

◆ server-side
– common-gateway-interface with perl
– basically API between web server and some program to

pass parameters coming in over the web
– could invoke database OR whatever

15Jim Binkley

client-side extensibility
◆ may wish better gui/formatting than with

just plain HTML OR
◆ wish to offload work from busy server

(server scalability issues)
◆ can use java/JavaScript, etc

– java can be used on server-side for that matter
◆ our goal here is NOT to explore these

issues (basically just http ...)

16Jim Binkley

intro - summary
◆ platform independent (HTML)
◆ protocol opaque (HTTP/ftp/gopher, etc.)
◆ ties docs together over net with hypertext

links (HTML/links)
◆ 2-d graphics (HTML)
◆ can tolerate file heterogeneity (MIME)
◆ client/server extensions via various

programming languages/techniques

17Jim Binkley

intro - HTML
◆ HTML is a language that consists of ways of “marking

up” text and including pictures and links
◆ the markup symbols are called tags and are not displayed

at the viewer, rather they are interpreted as suggestions as
how to format the display

◆ clients format HTML as best they can - interpretation is
not the same from client to client

◆ tags include ways to include pictures in GIF/JPEG/png
format, links, paragraphs, lists, GUI objects like buttons
and fill-in fields (forms)

◆ note: html really is NOT a networking protocol, just a
display language somewhat akin to postscript/NROFF/Tex

18Jim Binkley

HTML example
◆ <p> blah blah blah </p>

<p> blegh foo! </p>
◆ when we fetch and display the HTML:

blah blah blah

blegh foo!

19Jim Binkley

HTML < SGML
◆ HTML is subset of SGML, Structured

Generalized Markup Language
◆ SGML used by US DOD/ISO developed
◆ software exists for SGML
◆ key is that HTML is simplified over SGML
◆ another key: “trust the client”
◆ tradeoff: platform independence versus

authoring control

20Jim Binkley

religion and html
◆ some want absolute control over how their

data is displayed, want “physical” control
◆ some want platform independence, want

“logical” suggestions where client does best
job it can according to local circumstances

◆ Do It My Way!
◆ Do It My Way!

21Jim Binkley

some basic html tags
element type description
A container src/dest of link
B container bold text
LINK empty link from this doc
BR empty line break
H1...H6 container heading level
IMG empty image
LI empty list item
UL container unordered list
P empty paragraph
HR empty horizontal rule

22Jim Binkley

html example - the basic skeleton
<html>
<head>
<title> Simple Web Page </title>
<link rev=“MADE” href=”mailto:jrb@cs.pdx.edu”>
</head>
<body>

 THE BODY GOES HERE

</body>
</html>

23Jim Binkley

html body - the inside
<h1> Simple Web Page - first level header </h1>
Here is a picture of my friend, Bev Kramlich, hope she never
hears about this. <P>
 Bev Kramlich <P>
<h2 A Second level header. Plus Interesting Web Places to Visit
</h2>
<!-- you didn’t see this -->

 <A href=“http://www.NCSA.uiuc.edu/SDG/People/robm/
sg.html”>A Typical System Administrator

<hr> <address> somebody@somewhere.org </address>

the
result...

25Jim Binkley

HTTP protocol - encapsulation

link ip tcp http data

http on top of tcp on top of IP

data == ASCII text, html, image,
typed with MIME type

26Jim Binkley

HTTP - Hypertext Transfer
Protocol

◆ protocol web clients use to talk to “web” servers
(use http/fetch html)

◆ TCP-based, typically to server port 80
◆ simple request/response protocol
◆ client makes request, tells server what it can

handle for file types
◆ server responds with MIME type + data file, type

info usually gained from file suffix (foo.png)
◆ commands done in ASCII, errors in ASCII

27Jim Binkley

HTTP, cont.
◆ commands called “methods”, but for the most

part, just a variation on “get file”
◆ server status and errors similar to error strings

found in ftp/email
– 200 - successful
– 300 - not done yet; e.g., 301 is moved permanently
– 400 - client error; e.g., 403 forbidden (server refuses)
– 500 - server error; 503 service unavailable at the

moment

◆ http 1.0 being replaced by http 1.1

28Jim Binkley

protocol overview
client server

TCP connect TCP/socket accept (port 80)
HTTP get file

 accept filetypes x, y, ...

 server status + header
 info

 MIME type
 return file data

<read and display data>
TCP close

note: typically DNS before TCP ...

29Jim Binkley

HTTP 1.0 Methods (3)
◆ GET file - used for fetching most HTML documents, file

is URL minus protocol/DNS portions.
– may use conditional if-Modified-Since time

get is done only if object is newer than time
– also used for one form of cgi-bin forms (“get”)

◆ HEAD file - get server-side header info about file but not
file itself. Used for link test, cache test.

◆ POST cgi-bin/file - another way to do forms
– theoretically used to annotate/append/”post” message

or send record to database

30Jim Binkley

HTTP methods, cont.
◆ but other methods have been proposed; e.g.,
◆ PUT - put new URL and overwrite old one
◆ DELETE
◆ question is: how to authorize remote file access;

i.e., how to make it secure so can do
PUT/DELETE, therefore less available

◆ original designers hoped that annotation of pages
would be possible (yellow-sticky analogy along
with hypertext) - unsuccessful idea at this point

31Jim Binkley

protocol trace - GET method
% telnet localhost 80
GET /foo.html HTTP/1.0 <cr> <cr>
HTTP/1.0 200 OK
Date: Tuesday, 22-Nov-94 18:10:58 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wednesday, 16-Nov-94 21:18:37 GMT
Content-length: 1115
<HTML> <TITLE> Joe FooBar’s Home ... </TITLE>
HTML...etc., etc...

request:
header:

body:

32Jim Binkley

server-side note (file mapping)
◆ in previous slide /foo.html is mapped on

server side to server documents file tree
◆ e.g., with server on UNIX, file tree maybe

/usr/local/httpd/htdocs/index.html
◆ GET / -> root is mapped to index.html
◆ /foo.html would be in above htdocs

directory

33Jim Binkley

user home page - UNIX server
◆ on UNIX server, users may have home pages
◆ http://foo.org/~bob
◆ cd ~bob; mkdir public_html;
◆ make it world readable, chmod 664 public_html
◆ make your home page public_html/index.html
◆ make it world readable too
◆ so http://foo.org/~bob as URL is mapped to

http://foo.org/~bob/public_html/index.html by web server

34Jim Binkley

protocol trace - HEAD method
% telnet localhost 80

HEAD / HTTP/1.0 <cr> <cr>

HTTP/1.0 200 OK
Date: Tuesday, 22-Nov-94 18:13:45 GMT
Server: NCSA/1.3
MIME-version: 1.0
Content-type: text/html
Last-modified: Wednesday, 16-Nov-94-21:18:37 GMT
Content-length: 1115
<connection closed>

35Jim Binkley

some example MIME types

text/plain no formatting
text/html display as HTML (.html)
application/postscript fireup ps viewer (.ps)
application/powerpoint fireup powerpoint (.ppt)
image/jpeg jpeg image, inline display (.jpeg)
image/gif gif image, inline display (.gif)
audio/basic u-law format, fireup audio playback (.au)
video/mpeg short “movie”, fireup mpeg player (.mpeg)
audio/x-midi MIDI file format (.mid)

MIME type viewer action

36Jim Binkley

MIME type extensibility
◆ on server, add types to server config file,

server associates file extension with MIME
type

◆ on client, teach client about local viewer
apps; e.g., windows NCSA mosaic.ini file
[Viewers]
TYPE10=“audio/x-midi”
audio/x-midi=“mplayer %ls”

37Jim Binkley

http 1.1 - just an introduction
◆ RFC 2616 - fundamental redefinition of

HTTP 1.0
– 176 pages long ...

◆ host request header - next slide
◆ must support persistant connections

– one TCP connection, many itty-bitty image
files

– not one connection per file
– good for TCP and good for the Inet

38Jim Binkley

host request
◆ client may send:

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.org

◆ (absolute URL or path) + host info (may include
port)

◆ may help eliminate wasteful binding of IP
addresses to ONE server, since this info is now
available to server (not buried in stack)

◆ can now bind multiple names to one IP address

39Jim Binkley

etc. section - a few more tricks
◆ proxies
◆ cgi-bin, quick overview
◆ security
◆ server-side scalability IS A PROBLEM
◆ there is no end to this ...

– use the web to learn about the web
– after all, WWW put the Internet on the map

40Jim Binkley

http - proxy extension
◆ Internet-capable server can act as proxy for clients not on

Internet - useful in firewall situations
◆ client simply sends http request with real URL

(ftp/http/gopher, whatever) encapsulated in http request
◆ server proxies as real client to internet
◆ sends info back to client
◆ server can cache results - useful for Internet-wide

efficiency
◆ can do gopher, http, ftp, can’t do telnet of course

41Jim Binkley

proxy picture

client

proxy
server

remote
Inet server(http: ftp:)

ftp get

disk
cache

42Jim Binkley

cgi-bin: server-side extensibility
◆ cgi - Common Gateway Interface
◆ server-side app lives in /<server-path>/cgi-bin, invoked by

web server.
◆ can be coded in C, perl, C++, shellscript, java
◆ needs to be able to write to stdout, read environment

variables or stdin
◆ conventions exist (GET/POST) for passing parameters

from form to cgi applet
◆ cgi app can send more HTML back to client as output,

which may in turn have more form tags/cgi references

43Jim Binkley

forms + cgi-bin apps
◆ one can invoke “forms” on the client-side
◆ forms consist of a limited set of GUI objects, text

fill areas, fill-in fields, select menus, buttons,
◆ all expressed as HTML tags in the HTML src
◆ when form is complete, user “sends” via

embedded URL to backend cgi-bin app located at
http server

◆ server-side cgi-bin app processes form

44Jim Binkley

cgi-bin architecture

client
GET/POST + params

form output
web
server

form
shown
here

cgi-bin
app

pipe

45Jim Binkley

security
◆ end/end exists, authentication and/or encryption
◆ plaintext password and/or IP address

authentication exist
– not ideal for the usual reasons

◆ SSL offers easy server-side encryption
– client-side authentication less-easy
– leads to issues of Public Key Infrastructure

◆ beware: download of code from strangers
◆ privacy issues; .e.,g., cookies which are ASCII

state stored by server at client

46Jim Binkley

server-side scalability
is challenging issue

◆ 1 server - 100 million clients want ONE PAGE
RIGHT NOW!

◆ intranet solutions include:
– round-robin DNS
– NAT-like remapping of local addresses, 1 to many

◆ Internet solutions
– try to determine “nearest” server and bounce request

(e.g., use BGP routing info)
– try to build large web of smart servers and clever

rewrite/caching schemes at application layer

	World Wide Web
	outline
	intro
	key technologies/buzzwords
	history in 1 slide
	this slide is wrong? - standards
	intro - concepts
	basic client/server architecture
	hypertext links - URLS
	this is a GREAT idea
	web browser may speak more than http; e.g., ftp client too
	file format extensibility
	file heterogeneity
	client/server code extensibility
	client-side extensibility
	intro - summary
	intro - HTML
	HTML example
	HTML < SGML
	religion and html
	some basic html tags
	html example - the basic skeleton
	html body - the inside
	HTTP protocol - encapsulation
	HTTP - Hypertext Transfer Protocol
	HTTP, cont.
	protocol overview
	HTTP 1.0 Methods (3)
	HTTP methods, cont.
	protocol trace - GET method
	server-side note (file mapping)
	user home page - UNIX server
	protocol trace - HEAD method
	some example MIME types
	MIME type extensibility
	http 1.1 - just an introduction
	host request
	etc. section - a few more tricks
	http - proxy extension
	proxy picture
	cgi-bin: server-side extensibility
	forms + cgi-bin apps
	cgi-bin architecture
	security
	server-side scalabilityis challenging issue

