
1Jim Binkley

TCP Protocol - Transport Layer

TCP/IP class

2Jim Binkley

outline
◆ intro
◆ sliding window protocol
◆ tcp concepts

– header/piggybacking
– ports and sockets (connection idea)

◆ open/close state machine
◆ some protocol mechanics
◆ performance

3Jim Binkley

intro
◆ TCP - Transmission Control Protocol
◆ reliable, connection-oriented stream (point to

point) protocol
– if UDP is like U.S. Mail
– TCP is like a phone call (cannot broadcast/multicast)

◆ we need stream delivery because underlying
mechanism has flaws
– out of order due to routing, or loss, or corruption (or

dups due to timeout/resend)

4Jim Binkley

intro

◆ RFC 793 and host requirements 1122
◆ TCP has own jargon:

– socket - we’ll see in a bit
– segment: a TCP packet
– MSS: maximum segment size, max pkt one

TCP side can send another, negotiated at
connection time

– ports:

5Jim Binkley

TCP properties
◆ stream orientation. stream of OCTETS (bytes)

passed between send/recv
◆ byte stream is full duplex

– think of it as two independent streams joined with
piggybacking mechanism

◆ piggybacking - one data stream has control info
for the other data stream (going the other way)

◆ unstructured stream
– tcp doesn’t show packet boundaries to applications

6Jim Binkley

TCP properties

◆ unstructured stream, cont
– but you can still structure your i/o as

“messages” or structures if you want
◆ virtual circuit connection

– client connects and server listens/accepts
– i/o transfers don’t have remote peer address

◆ tcp provides flow control
– you don’t have to worry about recv buffering

7Jim Binkley

writing structures down TCP pipe

struct foo { int x; int y; int z; } f;

write (sock, &f, sizeof (struct foo));

read(sock,
&f,
sizeof (struct

foo));
* not exactly

8Jim Binkley

TCP properties

◆ efficiency - not easy to duplicate over
WAN environment

◆ congestion detection end to end
– backs off if it thinks net is congested

◆ most TCP/IP error handling is in TCP
– end to end

◆ complex protocol
– can treat telnet (interactive) and ftp (bulk

transfer) differently + acks/timers, etc

9Jim Binkley

TCP buffering and prog POV
◆ can’t predict very well as programmer how tcp

will buffer data
– write 2 512 byte packets, might read 1 1k pkt
– write 1 1024 byte packet, might read 2 512
– type in 3 characters, tcp might send them as 1 3 byte

packet

◆ It’s a data stream
◆ writes are atomic, unless you use non-blocking

I/O. reads are not

10Jim Binkley

reinventing tcp...

11Jim Binkley

TCP - Complex protocol
◆ Doug Comer states that TCP is a protocol and not

any particular specification or chunk of software.
True, but

◆ Binkley states: “Don’t try this at home, borrow
one from the Internet”
– 4.4 BSD, KA9Q, linux

◆ TCP is not easy to debug or test in terms of
interoperability (or replace with a reliable UDP
app)

12Jim Binkley

sliding window protocol basics

◆ positive acknowledge with retransmission
– recv must send ACK with seq #
– sender must timeout and resend if ACK fails to

arrive; e.g., normal successful exchange:

send pkt N, start timer

send ACK N

cancel timer

S

R

13Jim Binkley

sliding window

◆ and when it doesn’t work

boom!pkt #i

timer expires, resend #i

ack #i

S R

because we resend: we can duplicate pkts and ACKS!

14Jim Binkley

sliding window protocol

◆ simple pos. ack. with retransmission is
called “ping-pong” protocol, not efficient

◆ send && wait for ACK, therefore data only
flows one way at a time, not both ways,
thus we cut efficiency of channel in half

◆ we want to send many packets (asap) and
get back ACKS (possibly combined into 1
cumulative ACK)

15Jim Binkley

sliding window

◆ sliding window is more complex form of
pos. ack. with retransmission

◆ we still retransmit and we still want ACKS

packets: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

acked unacked

window

1-3 sent and ACKED, 4-7 in window and sent but
not ACKED, if ACK arrives, sender slides window up

not sentdone

16Jim Binkley

sliding window, cont.

◆ goal in previous slide: cumulative ACK
e.g., [ACK up to #7]

◆ tcp uses bytes not packets for sequencing
◆ recv-side controls sliding window and

views that as available buffering, can stop
sending by telling it window size is 0 in
ACK, thus flow control

◆ with window size == 1, we get simple
positive ack with retransmission

17Jim Binkley

TCP - encapsulation

ethernet ip header tcp header data (but maybe not)

TCP header may have options, but default size is
20 bytes

e.2=14 20 20 1460

18Jim Binkley

TCP header
0 15 16 31

source port: 16 bits dest. port: 16 bits

sequence number: 32 bits

acknowledge number: 32 bits

TCP options (if any)

hlen:4 resv:6 U A P R S F window size: 16

TCP checksum:16 urgent pointer: 16

19Jim Binkley

Header - explained

◆ header sent in every TCP packet, may just
be control message (SYN/FIN/ACK) with
no data

◆ view TCP as 2 sender/recv data streams
with control information sent back the other
way (piggybacking)

20Jim Binkley

header slides

◆ source port: 16 bits, the TCP source port
◆ destination port: 16 bits, note ports in 1st 8

bytes
◆ sequence number: 1st data octet in this

segment (from send to recv): 32 bit space
◆ ack: if ACK flag set, next expected

sequence number (piggybacking; i.e., we
are talking about the flow the other way)

21Jim Binkley

header, cont.
◆ hlen: # of 32 bit words in header
◆ reserved: not used
◆ flags

– URG: - urgent pointer field significant
– ACK:- ack field significant (this pkt is an ACK!)
– PSH: - push function (mostly ignored)
– RST: - reset (give up on) the connection (error)
– SYN: - initial synchronization packet (start connect)
– FIN: - final hangup packet (end connect)

22Jim Binkley

header, cont.

◆ window: window size, begins with ACK
field that recv-side will accept (piggyback)

◆ checksum: 16 bits, pseudo-header, tcp
header, and data

◆ urgent pointer: offset from sequence
number, points to data following urgent
data, URG flag must be set

◆ options - e.g., Max Segment Size (MSS)

23Jim Binkley

TCP piggybacking (header)
◆ data may be sent 2-ways, sender to recv (1-way data flow)

may contain piggybacked state (ack/window fields) for
other data channel. This info is feedback on other channel

seq no = i, ack no = j,
window size = 4k

peer peer

recv win on
other side is
4k now

returned pkt either ACK or may have data

tcp connection == 2 data streams

24Jim Binkley

ports and sockets
◆ TCP clients and servers have a TCP port in the

TCP port space 0 (not used)..64k-1
◆ unlike UDP, TCP uses connection as fundamental

abstraction, not port
◆ when we connect, we end up with:

peer (client): 18.25.0.36,1069; 128.10.2.3,25
peer (server): 128.10.2.3,25; 18.25.0.36,1069

◆ each side has 4-tuple (socket) which is used to id
incoming packets (demux to app)

25Jim Binkley

ports and sockets

◆ TCP server architecture thus
connected_fd = accept(listen_fd, ...);

◆ server may spinoff “slave” thread on
connected fd to take care of application-
level protocol (some sequence of read/write
calls)

◆ all server processes bound to WK port have
same server-side port #; e.g., http/80

26Jim Binkley

TCP open/close

◆ TCP distinguishes passive and active open
◆ servers usually do passive open, means they

LISTEN
◆ clients usually do active open, means they

connect
◆ reach ESTABLISHED state after 3-way

handshake

27Jim Binkley

open/close, 3 way handshake
sender recv

1. send SYN seq=x
 recv SYN,

2. send SYN seq=y,
ACK x+1

3. recv SYN/ACK,
send ACK y+1

both sides can SYN at the same time and it will work
results include established connection, initial sequence numbers

exchanged, ACKS ack next expected byte (cumulative)

28Jim Binkley

closing a tcp connection
◆ connections are full duplex and it is possible to

shutdown(2) one side at a time
◆ close(2) closes everything and the UNIX version

doesn’t quite jibe with TCP - UNIX close is async
and doesn’t wait for handshake

◆ really just 2 2-way handshakes (send FIN, recv
replies with ACK per channel)

◆ interesting problem: how do you make sure last
ACK got there (can’t ACK it...)

29Jim Binkley

close

peer1 peer2
send FIN seq=x
 recv FIN
 send ACK x+1
recv ACK
 send FIN seq=y
recv FIN
send ACK y+1
 recv ACK

1st to send FIN is last to send ACK,
no way to know if that ACK arrived

30Jim Binkley

state machine - simplified open
closed

listen

syn rcvd

established

syn sent

passive
open

active open, send SYN

2. got SYN, send
SYN, ACK

1.

3. got 2., send ACKgot ACK
from 3.

i/o, i/o, it’s off to work we go ...

31Jim Binkley

state machine - close

established

close wait

fin wait1

fin wait2

last ack

closing

time wait

recv FIN, send ACK

app closes,
send FIN

back to
closed

get ACK

app closes,
send FIN

got FIN

send ACK
got ACK

got
FIN, ACK
 send ACK

got FIN, send ACK

got ACK

1st to close goes to time wait jail,

2 MSL

32Jim Binkley

the FINE for the FIRST FIN is ...

◆ both apps could close first and send FIN,
hence left side is more complex, but state
machine supports async close

◆ s/he who closes first, gets stuck in
TIME_WAIT state since we aren’t getting
an ACK back for our ACK sent, must wait
2 MSL (max segment length) time, 1 or 2
minutes typically

33Jim Binkley

Protocol Mechanisms (some)

◆ Stevens, p. 227
“There is no single correct way for two
TCPs to exchange a given amount of data”

◆ window size - flow control
◆ delayed ack
◆ nagle algorithm
◆ adaptive retransmission + backoff
◆ congestion control

34Jim Binkley

TCP variable window size
◆ flow control occurs because the receive side

controls the window size
◆ if window size == 0, the sender cannot send data
◆ sender will send window probe (1 byte of data) to

see if window is open (ack might be lost).
Separate timer for this function called persistance
timer

◆ this is end to end flow control, doesn’t include
routers

35Jim Binkley

delayed ACK
◆ try to not send ACK immediately and hope that data will

show up so that ACK can piggyback (free ride, not extra
packet)

◆ delay typically 200 milliseconds
◆ this is recv-side timer, not send ACK timer
◆ with telnet might see

send 1 char
echo char and ACK it

delayed ACK for echo

36Jim Binkley

nagle algorithm
◆ traditional telnet over wan can add to congestion

because we have 40 bytes of header for 1 echoed
byte of data

◆ rfc 896 - nagle algorithm
◆ tcp connection can only have one unacked

outstanding small segment. Can’t send more until
you get an ACK, sender may collect more data

◆ only affects sender who sends small data amounts
◆ TCP_NODELAY socket option turns this off

37Jim Binkley

nagle, cont.

◆ algorithm is said to be “self-clocking”, you
can go as fast as round trip latency will
allow since you wait for return ACK

◆ hope is that sender slows down to give data
opportunity “to pile up” before it is sent

◆ X-windows would not want nagle algorithm
since it would send small data chunks
(mouse clicks) and want those sent as real-
time as possible

38Jim Binkley

timeout and retransmission

◆ can’t use fixed time for send ACK timer
◆ if too long, response not good if timeout

occurs,
◆ if too short, can’t know apriori how long to

wait (and congestion might change the
time)

◆ TCP uses adaptive retransmission timer,
◆ see text for details, uses fixed-point arithmetic

39Jim Binkley

simple timer backoff

◆ if no acks at all are received tcp will use a
modified form of exponential backoff

◆ Stevens (p.299) gives 1,3,6,12,48, 64 on
one implementation, retries at a minute
until 9 minutes then a reset

◆ will this work for the Mars Mission?
◆ if packets start showing up backoff is

removed

40Jim Binkley

congestion control in TCP

◆ routers may drop packets as space is not
pre-allocated by definition - congestion

◆ routers don’t have effective mechanism to
indicate congestion (ICMP source quench is
not it...) to sender

◆ assumption: packet loss due to damage is
small, therefore TCP assumes it means
congestion since ACKS do not come back

41Jim Binkley

congestion control

◆ TCP uses slow start and multiplicative
decrease to deal with congestion

◆ Van Jacobson 1988 outlined these ideas
◆ slow-start roughly: whenever starting traffic

or recovering from congestion, start
congestion window at the size of a single
segment and increase it (up to a point) as
ACKs show up

42Jim Binkley

congestion avoidance

◆ multiplicative decrease - upon loss of a
segment, reduce the congestion window by
half down to a minimum of 1. For those
segments that remain in the send window,
backoff the retransmission timer
exponentially.

43Jim Binkley

routers and congestion - RED
◆ routers might use an obvious queue-drop

mechanism
– too many buffers; drop packets at end of queue call this

a“tail-drop” policy
– on heavily multiplexed router many TCP connections

may lose a packet and be forced into slow-start

◆ routers may use Random Early Detection (or
RED) - basically randomly discard packets in
Queue at a certain saturation point
– thus avoid tail-drop policy

44Jim Binkley

TCP efficiency/performance

◆ mid 80’s say with VAX on ethernet,
performance was poor, now can find good
approximation of 1 gigabit on faster end
hosts, 90% of 100BASE common

◆ assumptions (from Stevens):
send two packets into 2 pkt window
get one ack
2 hosts on ethernet
max data possible

45Jim Binkley

performance, cont.

◆ equation:

assume ethernet:
2 * 1460 * 10000000 = 1,155,063
2 * 1538 + 84 8

header (overhead) 8 bits
bytes
sec

real data bytes bits/sec

1155063
----------- = 92.4%
1250000

46Jim Binkley

ttcp - used to measure tcp thruput

◆ common on UNIX hosts
◆ disks not part of measurement
◆ normalize 1st say with measurement over

localhost
◆ then between hosts on net
◆ may use different window sizes,

– 8k/16k/32k/64k ...

47Jim Binkley

ttcp test - test ttcp

ttcp -t -s ... # ttcp -r -s

note: this is memory to memory, no disks involved

tcp stream across net

transmit receive

48Jim Binkley

some observations

◆ commodity P3 cpus with gigabit Ethernet
card can easily do 500mbits with TTCP

◆ 781 mbits between two Crays over 800 Mbs
hippi channel

◆ 907 over Cray loopback
◆ can’t go faster than slowest link
◆ can’t go faster than memory bandwidth
◆ can’t go faster than window size/rtt

49Jim Binkley

constraints are finally

◆ window-size (new window-size and PAWS
options are significant here)

◆ speed of light

50Jim Binkley

study questions

◆ assume you have a TCP connection (telnet
to site Y) and you reboot a router in
between, what should happen?

◆ if you have a TCP connection and you
reboot one of the end-end systems, what
should happen?

◆ what would be the problems with having
TCP support multicast addresses?

51Jim Binkley

study questions

◆ it is widely assumed (if not cherished) that
TCP would make a poor mechanism for
transfer of audio/video steady-stream data?
Why is that? and can you make a case for a
contrarian point of view?

◆ you telnet to mars... what should you think
about in terms of tcp timers?
– hint: it might take about 10 minutes one-way to

Mars for light (depends on mars/earth orbits)

	TCP Protocol - Transport Layer
	outline
	intro
	intro
	TCP properties
	TCP properties
	writing structures down TCP pipe
	TCP properties
	TCP buffering and prog POV
	reinventing tcp...
	TCP - Complex protocol
	sliding window protocol basics
	sliding window
	sliding window protocol
	sliding window
	sliding window, cont.
	TCP - encapsulation
	TCP header
	Header - explained
	header slides
	header, cont.
	header, cont.
	TCP piggybacking (header)
	ports and sockets
	ports and sockets
	TCP open/close
	open/close, 3 way handshake
	closing a tcp connection
	close
	state machine - simplified open
	state machine - close
	the FINE for the FIRST FIN is ...
	Protocol Mechanisms (some)
	TCP variable window size
	delayed ACK
	nagle algorithm
	nagle, cont.
	timeout and retransmission
	simple timer backoff
	congestion control in TCP
	congestion control
	congestion avoidance
	routers and congestion - RED
	TCP efficiency/performance
	performance, cont.
	ttcp - used to measure tcp thruput
	ttcp test - test ttcp
	some observations
	constraints are finally
	study questions
	study questions

