TCP/IP intro

Jim Binkley http://www.cs.pdx.edu/~jrb jrb@cs.pdx.edu

1

Very Brief Internet History

- ♦ 1957 Sputnik/USSR. US creates ARPA
- ♦ 62 Paul Baran, packet-switches (missiles)
- ♦ 69 -ARPA/DOD starts ARPANET
- ◆71 15 nodes
- ♦ 73 Ethernet/Bob Metcalfe Harvard Ph.D
- ♦ 79 USENET/UUCP over modems
- ♦ 82/83 Darpa starts using TCP/IP on Arpanet
- ♦ 83 BSD UNIX with TCP/IP, enet

Inet history, cont

- ♦ 84 DNS and 10k hosts
- ♦ 88 6k/of 60k hosts visited by Morris worm
- ♦ 89 IETF and IRTF under IAB
- ♦ 92 1st MBONE audio/video over Inet
- ♦93 Hillary is root@whitehouse.gov
- ♦ 93 WWW begins to take over
- ♦ 94 businesses and biz begin to take over
- ♦94 gov. decides OSI not best idea...

citations:

- 95 NSFNET replaced by commercial backbones
- ♦93-now Internet does not fail ...
- ◆ 2002 term "switch" no longer refers to circuits ...
- ♦ See Hobbes Internet Timeline: RFC 2235
- http:info.isoc.org/guest/zakon/Internet/Histo ry/HIT.html for most of these

Internet Growth - DNS surveys in the past

Date	Hosts	Nets	Domains
1969	4		
1984	1024		
1987	28174		
1989	130000	650	3900
1990	313000	2063	9300
1992	727000	4526	
1993	1313000	7505	21000
7/94	3212000	25210	46000
7/95	6.6 M	?	120000
7/96	12.8M	?	488000
97	20-30M	45/55k	>1m
04	???	150k	66m

note: scalability issues

- ◆# ip addresses, # ip nets
 - IPv6 may address this
- - there are only a handful of DNS root servers
- ◆ # of routes in routers
 - CIDR classless internet domain routing
 - IPv6 doesn't help, process issue, not architecture issue so much

recent information

- ◆ see <u>http://www.cidr-report.org</u>
- ◆ IPv4 allocated addresses run out in 2019
- ♦ allocated versus used issue ...
 - define "run out"
- allocation from IANA to Regional Registry
 to ISP to you
- ♦ BGP IPv4 routes at around 190000 2006
- ◆ # of hosts??? dns names irrelevant
 - <u>www.badmovieoftheweek.com</u>
- ♦ 66 million DNS names acc. to Verisign

more info

- ♦ allocate from class A/C now, B used up
- ♦ 57% of IPv4 address space is allocated as of 2004
- ♦ 31% is advertised
- IPv6 might have a thousand or so routes in core routing tables

world-wide data net vs telco/voice

- source: Insight Research Corp, and Boardwatch, August 2000
- world network demand billions of packets
- ◆1996 data=135, voice=948
- ♦ 1999 data=1572, voice=1511
- ◆2000 data=4451, voice=1766
- ◆2002 data=27645, voice=2063
- voice has turned into *data* with VOIP

Some count # of Inet hosts

◆ US now #1, China #2 (> 100 million each)
◆ note this statistic (acc. to FBI last year)
◆ country in world #1 in Inet attacks

− US

- country in world #2 in Inet attacks
 China
- matches up pretty well with number of hosts
 in the world

Tcp Intro

- TCP/IP Internet protocol suite, TCP and IP are *protocols* in the suite, there are more
- open system, not proprietary, stacks from different vendors INTEROPERATE
 - Novell ipx, Apple appletalk closed systems
- ◆ Internet uses TCP/IP protocols
- amazingly: THERE CAN ONLY BE ONE
 INTERNET ...

Protocol layers

- protocol layers each layer has its own focus, associated *encapsulation* and *addressing*
- ◆4 layers in TCP/IP (older)
- ♦ 7 in Open Systems Interconnect (newer)
- layer is logical idea and may be in fact be ignored in implementation

end systems and intermediate systems

IS or router/gateway

ISO/OSI Reference Model

14

TCP Layering

Internet Protocols

apps	email (smtp) telnet/rlogin ftp/rcp http(www)/gopher	dns nfs snmp rip	bootp	ping traceroute ospf		
transports	tcp	udp		"raw"/ip		
network	ip + icmp + igmp					
device	arp/rarp	arp/rarp		slip/ppp/hdlc		
	ethernet II (or 802.3)		phone line, ISDN			

TCP layers/architecture

- data flows up/down stack
 - each layer on write adds header/addr. info.
 This process is called **encapsulation**
 - on read, data is demultiplexed decide which protocol upstairs to feed it to, and decapsulated
- demux example: from link layer, packet
 could go to IP, ARP, RARP

transport/network layer

network layer - hides physical layer ip is hop by hop transport layer - end to end, error correction tcp is end to end

Two Big Ideas

- peer layers in stack virtually talk to each
 other -- this is a "protocol"
 - tcp talks to remote endpoint tcp
 - ftp clients talks to ftp server
 - ip src talks to ip dest and may talk to routers too
- network layer hides transport/apps from exact details of physical layer
 - routers glue together networks

addressing/encapsulation

• application -

- Domain Name System (sirius.cs.pdx.edu)

- sockets

- tcp/udp, use ports, 16 bit unsigned ints
- ♦ ip uses *IP address*, 32 bit int

- (net, subnet, host)

Ink layer, ethernet uses IEEE 48 bit MAC address

encapsulation (packet goes out)

IP addresses

♦ per interface. each i/f has

- (ip address, broadcast address, subnet mask)
- ♦(network, subnet, host)
- written in *dotted decimal* in *network byte* order (big-endian) 200.12.0.14 (0..255)

IP class address table

class	bits	net	host	range	
class A	0	7 bits	24	0.0.0.0	127.255.255.255
class B	10	14	16	128.0	191.255.255.255
class C	110	21	8	192.0	223.255.255.255
class D	1110	28	-	224.0	239.255.255.255
class E	11110	27	-	240.0	255.255.255.255

ip addresses, cont

- ◆ 3 types of IP address (topographical)
 - unicast
 - » 127.0.0.1, 201.3.4.5
 - broadcast
 - » 255.255.255.255, 129.14.255.255,
 - » 0.0.0.0
 - multicast
 - » 225.1.2.3

ip address, cont

- uniqueness must be handled by humans
- various IP authorities at this point, Regional Inet Registries
- U.S. authority is ARIN (NA, SA, Africa), www.arin.net
 APNIC for asia, RIPE for europe (there are more now)
- ◆ ISP feeding chain in U.S., ends up at ARIN
- ◆ IP (v4,v6) addresses + A.S. numbers (later)
- DNS was from Internic: rs.internic.net, Network Solutions (www.networksolutions.com), ICANN (www.icann.org)
 - now broken up into separate registration companies

whois

traditional tool for looking up

- 1. dns names
- 2. ip address info
- ♦e.g.,
 - % whois pdx.edu
 - % whois -h whois.arin.net 131.252.0.0/16
 - web: www.internic.net/whois.html
- ♦ go and play with these ...

obtaining an IP address

- you used to get it from the Internic, but now
 usually from IP/pipe "ISP"
- we need to worry about making sure that addresses can be hierarchical
 - CIDR blocks, allocated top-down from your "provider" to you
 - if you change providers, you get to renumber
 - ip addresses dynamic or static
 - » dynamic means using DHCP
 - » static means manually configured

transport/port numbers

◆ TCP/UDP unsigned 16-bits shorts

- 0..64k-1
- servers are known by "well-known" ports
 - e.g., telnet 23, http 80, ftp 20, mail 25
- ♦ IAssigned Numbers Authority (IANA) assigns them
 - www.iana.org, also see www.icann.org
- on UNIX stored imperfectly in

– /etc/services

UNIX reserves ports 0..1023 for "root"/su-only
dynamically viewed with % *netstat -a* 28

Domain Name Systems

 primary function - map human readable names to IP numbers

- sirius.cs.pdx.edu -> 131.252.220.13

- ♦ done entirely as application on top of UDP
- Client-server model, with DNS servers in relatively flat hierarchy

♦ o.s. deals in ip addresses, not DNS names

client - server paradigm

- applications (and sometimes o.s.) organized in application architecture paradigm called *client*server
- usually but not always message oriented
- client app talks app. protocol to remote server that processes each message
- ◆ servers might be
 - iterative (process message to conclusion) / UDP
 - or concurrent (master/slave) / TCP

client-server, server forms:

♦ iterative:

do forever wait/read client message process message write ACK to client

do forever

wait for connection fork (spawn task) child does i/o and exits

Internet - what is it?

- elephant and blind men ... many Points of View
- a suite of many app protocols on top of TCP/UDP/IP - open system, etc., etc.
 - packet switched net on top of circuit/telco
- on MANY physical networks, WAN/LAN
- ◆ the World Wide Web (http/TCP)

– or chat rooms?

- a computer network that can survive atomic attack?
 - but where network security is an oxymoron?

Internet - what is it?

- *Internet* the world-wide set of nets combined with TCP/IP
- *internet* a bunch of nets tied together
- The Internet is built on TOP of the phone co's net and views the TELCO network as a link layer black box (subnet model as opposed to peer model)

physically?

- ◆ 10+ Network Access Points or NAPs/MAEs
 - where backbones meet
- ♦ N backbones that cross the U.S.
 - UUNET/PSI/GTE(BBN Planet)/Sprint/C&W
 - T3, or faster OC3/OC12/OCfast ATM/SONET

34

- ◆ regionals (being purchased by the above)
- Iocal (and national) ISPs
 - AOL/teleport/raindrop labs
- ◆ Jane User with her pc/56k modem

telco WAN technologies

- ♦ ATM/SONET (maybe) OC3 (155), OC12 (655)...
 - OC48 or faster possible (WDM means virtual pipes)
- ◆ T3 (<45Mbps) STM \$25k/month
- ◆ T1 (1.54Mbps) \$500 \$2k/month
- ♦ frame relay (shared load)
- ◆ ADSL new, cable modem, 256-T1 or so
- ♦ ISDN 64/128k
- ♦ analog modems (POTS) 56k/28.8k/14.4k
- ETHERNET is starting to make a dent at least in MANs (1 gigabit, 10 gigabit soon)
 35

ISPs - Internet Service Provider

- ◆ provides you with a connection + X services
- services might include:
 - a wire, however big/small
 - ip address space (or an ip network for N lan machines) + DNS name/server, ppp (routing)
 - SMTP email (POP accounts)
 - UNIX login account
 - NNTP Usenix news
 - web pages or ... servers or "e-commerce"

who controls it?

- Internet is world-wide question of govt.
 control is very interesting
 - governments versus Internet
 - Inet said to "route around censorship"
 » John Gilmore: www.eff.org
- ♦ IAB/IETF determine standards
- but industry may preemptively determine standards (early bird ...)

Oracle/Microsoft/Sun/Intel/Cisco

Internet Organization (well...)

- ISOC Internet Society. professional society to faciliate, support, promote Inet
- IAB technical oversight and coordination, falls under ISOC
- ◆ IESG Inet Eng. Steering Group oversees:
- IETF meets 3 times a year, develops, argues over, and standardizes protocols for Inet. 70-80 wgs. Organized in areas, e.g., routing area.
- IRTF Internet Research Task Force long term research, just a few people compared to IETF

Standards Process

- standards called RFCs Requests For Comment
- ♦ numbers > 3900 now
- IETF wg members write "drafts", eventually hopefully may become standards
- In the advantage of the second sec

TCP/IP free "stack" implementations

- "stack" == o.s. part, not the apps
- ◆ de facto source standard is BSD, now 4.4
 - 4.2 BSD 83 first widely spread tcp/ip
 - 4.3 BSD 86 perf. improvements
 - 4.3 BSD Tahoe 88 slow start, congestion avoidance
 - 4.3 BSD Reno 90 tcp header prediction, slip header compression, new router algorithm
 - 4.4 BSD 93, multicasting
- others: KA9Q for dos; linux (unix)
- ◆ 4.4 BSD book, Steven's volume 2 (freebsd)
- reference implementations: bsd tcp/ip, apache, bind, mrouted, zebra, etc ...