
1Jim Binkley

Even More TCP, part 2

TCP/IP class

2Jim Binkley

outline
◆ tcp network trace
◆ timers
◆ persistance
◆ keepalive
◆ tcp options
◆ tcp current/future research

3Jim Binkley

TCP network trace, 1 of 3
shark> rsh fish ls .profile
#etherfind -v -between fishbait shark
1. TCP from shark.1023 to fish.shell seq 45b2c600,

syn, window 4096, <mss 1024>
2. TCP from fish.shell to shark.1023 seq 5e22a200,

ack 45b2c601, syn window 4096, <mss 1024>
3. TCP from shark.1023 to fish.shell seq 45b2c601,

ack 5e22a201, window 4096
4.TCP from shark.1023 to fish.shell seq 45b2c601,

ack 5322a201, window 4096, 5 bytes data

find the 3-way handshake. What did the sequence numbers do?

4Jim Binkley

TCP network trace, 2 of 3
5. TCP from fish.shell to shark.1023 seq 5e22a201,

ack 45b2c606, window 4096
6. TCP from shark.1023 to fish.shell seq 45b2c606,

ack 5e22a201, window 4096, 20 bytes data (!)
7. TCP from fish.shell to shark.1023 seq 5e22a201,

ack 45b2c61a, window 4096, 1 byte data
8. TCP from shark.1023 to fish.shell seq 45b2c61a,

ack 5322a202, window 4096
9. TCP from fish.shell to shark.1023 seq 5e22a202,

ack 45b2c61a, window 4096, 9 bytes data

5Jim Binkley

TCP trace, FINs? (finally)
10. TCP from fish.shell to shark.1023 seq 5E22A20B,
ack 45B2C61A, FIN, window 4096,
11. TCP from shark.1023 to fish.shell seq 45B2C61A,
ack 5E22A20C, window 4087,
12. TCP from fish.shell to shark 1023 seq 5E22A20B,
ack 45B2C61A, FIN, window 4096,
13. TCP from shark.1023 to fish.shell seq 45B2C61A,
ack 5E22A20C, window 4096,
14. TCP from shark.1023 to fish.shell seq 45B2C61A,
ack 5E22A20C, FIN, window 4096,
15. TCP from fish.shell to shark.1023 seq 5E22A20C,
ack 45B2C61B, window 4096

6Jim Binkley

TCP Timers
◆ 1. ack timer - receive ACK within a certain time, else

resend (send-side)
◆ 2. delayed ack timer - try and wait a bit after getting data

before sending ack
(recv-side)

◆ 3. persistance timer - if window is closed, send 1 byte of
data

◆ 4. keepalive timer - make sure conn. is up
◆ 5. time wait timer, 1 minute or so, make sure lack ACK

and all sequence numbers associated with connection are
gone from Internet

7Jim Binkley

silly-window syndrome
◆ occuring if due to timers, less data than window

size is exchanged
◆ reduces protocol to simple positive ACK with

retransmission
◆ e.g., if recv advertises 1k windows, then later

would advertise 4k window, sender might only
send 1k to fill window,

◆ recv must wait

8Jim Binkley

SWS/persistance timer
◆ recv must not advertise small segments
◆ sender may use persistance timer to wait for

larger window
◆ persistance timer backoff similar to or same

as exponential backoff
◆ persistance never stops though...

9Jim Binkley

keepalives
◆ by default (some?) TCP connections can

STOP exchanging data and remain up
◆ this is different from persistance (we don’t

have any data to send at the moment)
◆ routers may reboot or routes could even

change physically
◆ end systems don’t know and don’t care

10Jim Binkley

keepalives
◆ TCP has “feature” called keepalive timer
◆ intent is for server that has resources used

so that it can “hang up” and reclaim
resources if client is not using them actively

◆ if you use telnet, power-off host, you may
leave a “half-open” telnetd on server

◆ should this be done by app or by tcp?

11Jim Binkley

keepalives
◆ mechanism - one side sends “keepalive” probe

every 2 hours, plus 10 * 75 second more probes (2
hours, 12 minutes)

◆ probe may have seq number set to current - 1 with
no valid data (we just want an ACK)

◆ if no response (nobody home), connection is
closed, or RST if rebooted

◆ time is set in operating system and applies to all
possible applications - may not be tunable

12Jim Binkley

keepalive - mobility
◆ how would a keepalive be good/bad for mobile

hosts that might be disconnected for long periods
of time?

◆ some apps like ftp servers have their own app
timers built in - no command in N seconds,
connection is closed

◆ good for servers that need to conserve memory
◆ bad for mobile apps that want to remain connected

13Jim Binkley

options
◆ header can have options
◆ options include: NOOP, END, MSS, Window

scale factor, Timestamp, etc.
◆ TLV, 1 byte for tag, 1 byte for length
◆ MSS or max segment size is negotiated usually

via SYN exchange, 2 bytes max
◆ option can arrive with any segment, should be

ignored if not understood

14Jim Binkley

new wrinkles in TCP?!
◆ path MTU discovery

– TCP starts with min(local MTU, remote MSS)
– can’t exceed MSS of other end (default 536)
– send packets with DF bit sent
– if we get ICMP error, decrease and try again
– MSS should be MTU of outgoing i/f

◆ not so new, hopefully all TCPs use this
– note: you cannot block ICMP don’t

fragment errors at border router/firewalls

15Jim Binkley

window-scale option
◆ goal: make window bigger
◆ sent in SYN, both sides must exchange else

scaling factor remains 0, allowing interoperation
with older TCPs

◆ value is 0, 14 indicates left-shift of real window
size contained in 32 bit counter

◆ S = 0, 65535 * 2 ** 0 = 65535 (no change)
◆ S = 1, 65535 * 2**1 == 131070
◆ S = 2, 65535 * 2 ** 2 == 262140, up to S = 14

16Jim Binkley

timestamp option
◆ value placed in each packet sent
◆ reflected by recv in ACK returned
◆ allows TCP to get better granularity of

timing since in real life TCP acks once per
window

◆ no clock sync needed between hosts, key
idea: time is self-referential

◆ allows for better RTT calculation

17Jim Binkley

PAWS option - protection against
wrapped sequence numbers

◆ with high speed connections (and even if we use
timestamp scaling) the sequence number used by
TCP may wrap before packets can leave the
network

◆ gigabit network could wrap in 34 seconds
◆ timestamp is really only a monotonically

increasing value
◆ can be used to extend sequence # to 64 bits and

thus avoid this problem, (ts, sequence) pair

18Jim Binkley

T/TCP transactional TCP
◆ transaction is defined as follows:

– avoid connection overhead, if possible we want
RPC, send one request, get back ACK or value

– latency should be reduced to RTT plus service
turnaround time

– server should detect dups and not replay
transaction

19Jim Binkley

Transactional TCP
◆ rfc 1379
◆ basic idea

– avoid 3-way handshake
– shorten TIME_WAIT state

◆ alternative is Cheritons VMTP - Virtual
Message Transaction Protocol, RFC 1045,
1988, can do multicast

20Jim Binkley

re transactions: TCP versus UDP
versus ?

◆ neither TCP nor UDP ideal
◆ if we use UDP, depending on goal, might

add retransmission, sequencing, slow start,
checksums, adaptive retransmission ??

◆ TCP has connection overhead
◆ idea is to make TCP support transactions

with a few mods
◆ con: still won’t support broadcast/multicast

21Jim Binkley

how might TCP handle mobility?
◆ problem may exist if mobile devices lose

lots of packets at link layer?
◆ how do we differentiate slow-start and

simply being disconnected?

22Jim Binkley

TCP and you know what
(WWW)

◆ does it make sense for HTTP to use TCP?
– contrarian POV: TCP built for lots of i/o in i/o

sream, needs time with slow-start to optimize
itself

◆ HTTP 1.1 with “persistant connection”
should help here

	Even More TCP, part 2
	outline
	TCP network trace, 1 of 3
	TCP network trace, 2 of 3
	TCP Timers
	silly-window syndrome
	SWS/persistance timer
	keepalives
	keepalives
	keepalives
	keepalive - mobility
	options
	new wrinkles in TCP?!
	window-scale option
	timestamp option
	PAWS option - protection against wrapped sequence numbers
	T/TCP transactional TCP
	Transactional TCP
	re transactions: TCP versus UDP versus ?
	how might TCP handle mobility?
	TCP and you know what (WWW)

