1st Cut Reliable UDP Protocol

TCP/IP class

Jim Binkley



a mystery lecture

Jim Binkley



the problem

¢ nctwork/link layer problems include

— loss of packets due to congestion, collisions,
noise (ethernet detects bad crc, shoots packet),
or no space at sender (buffer overrun)

— data corruption due to not enough CRC, no
CRC, or bad memory

¢ that’s fine bucky, what do we do?
design an end-end reliable protocol

Jim Binkley 3



qualities of said protocol

¢ keep 1n mind that TCP 1s a possible model. It has
many complex features and may be too complex

¢ UDP doesn’t qualify (“fire and forget™)

¢ design criteria might include:
— reliable!
— efficient
— no deadlock and both sides can start asynch

— point to point connected (TCP) OR
N to 1 or 1 to N datagram-style (UDP)?

Jim Binkley 4



286 after download from Cray

flow control too..

L ~~=—

Jim Binkley



first assumptions

¢ assume a 1-way channel, writer to reader

»
»

¢ we will use positive acknowledge with
retransmission (as opposed to NAKSs)

Jim Binkley 6



pos. ack with retransmission

¢ send the packet, get back an explicit

acknowledgement.
pkt [1]

ack

& we need to time the ACK and resend if it
doesn’t come back

Jim Binkley



ACKs mean new problems

¢ assume a fixed TIMEOUT N, followed by a
resend? What problems does this
introduce?

— 1. we may have duplicate packets on the net

— 2. packets may get out of order due to more
than one path through routers (with different

link delays)
¢ we need a packet header with a sequence

~_number
Jim Binkley 2



packet header 1s at least

¢ rup hdr {
unsigned 1nt seqno;
unsigned long csum;

j

¢ a checksum too so we can deal with the
problem of damaged data. We can just use

the IP checksum algorithm (which 1s
weaker than a link CRC, but will do)

Jim Binkley 9



sequence number notions

¢ worry about what 1t does when 1t “wraps”
recv:

if recv_seqno > current_seqno
then OK!

¢ what if the recv_seqno 1s MAXINT?

¢ for a simple protocol the seqno range can be
[0..1]

— 110, then 1,1f 1, then O
Jim Binkley 10



ACKS need sequence numbers

¢ assume you just send back an ACK
send recv
send pkt[1] and wait for ACK
pkt[1] goes slow route and timeout occurs
retransmit, now takes fast route
got #2, send ACK
send pkt[1+1], wait for ACK
pkt[i+1] is lost
slow pkt[1] arrives
send ACK
get wrong ACK for pkt[1+1] 00PS ... SOITY ...

Tim BOW gysume it got there



more problems

¢ fixed timer may be permanently too slow
for a given end to end path

— make 1t too long, and you are inefficient if a
packet 1s lost

— too short and i1t will never work

¢ what 1f two processes both write a data
packet and then read for an ACK?

® how does the server handle > 1 client

Jim Binkley 17



UDP versus TCP?

¢ grasshopper: “Master, 1sn’t UDP more
efficient than TCP?”

¢ master: “Sure, 1f monologues are better than
dialogs!”

¢ IMHO - TCP vs UDP 1s a big case of “it
depends” both have pros/cons

¢ interesting problem: only have 1-way
channel, how do you make it reliable?
Jim Binkley 13



some study questions

¢ cfficiency? what does tcp do here?

¢ what more does TCP do that we haven’t touched
on?

¢ 1s pos. ack. with retransmission good for a reliable
multicast protocol (1 to N)?

¢ how do you detect that your end point 1s down?

¢ why does TCP use a 3-way handshake to initialize
the connection?

¢ why can’t you use a 3-way handshake at the end
Jim BipKlgyconnection? 14



