
1Jim Binkley

1st Cut Reliable UDP Protocol

TCP/IP class

2Jim Binkley

a mystery lecture

3Jim Binkley

the problem
network/link layer problems include
– loss of packets due to congestion, collisions,

noise (ethernet detects bad crc, shoots packet),
or no space at sender (buffer overrun)

– data corruption due to not enough CRC, no
CRC, or bad memory

that’s fine bucky, what do we do?
design an end-end reliable protocol

4Jim Binkley

qualities of said protocol
keep in mind that TCP is a possible model. It has
many complex features and may be too complex
UDP doesn’t qualify (“fire and forget”)
design criteria might include:
– reliable!
– efficient
– no deadlock and both sides can start asynch
– point to point connected (TCP) OR

N to 1 or 1 to N datagram-style (UDP)?

5Jim Binkley

286 after download from Cray
flow control too..

6Jim Binkley

first assumptions
assume a 1-way channel, writer to reader

we will use positive acknowledge with
retransmission (as opposed to NAKs)

7Jim Binkley

pos. ack with retransmission
send the packet, get back an explicit
acknowledgement.

we need to time the ACK and resend if it
doesn’t come back

pkt [i]

ack

8Jim Binkley

ACKs mean new problems
assume a fixed TIMEOUT N, followed by a
resend? What problems does this
introduce?
– 1. we may have duplicate packets on the net
– 2. packets may get out of order due to more

than one path through routers (with different
link delays)

we need a packet header with a sequence
number

9Jim Binkley

packet header is at least
rup hdr {

unsigned int seqno;
unsigned long csum;

}
a checksum too so we can deal with the
problem of damaged data. We can just use
the IP checksum algorithm (which is
weaker than a link CRC, but will do)

10Jim Binkley

sequence number notions
worry about what it does when it “wraps”

recv:
if recv_seqno > current_seqno

then OK!
what if the recv_seqno is MAXINT?
for a simple protocol the seqno range can be
[0..1]
– if 0, then 1, if 1, then 0

11Jim Binkley

ACKS need sequence numbers
assume you just send back an ACK
send recv
send pkt[i] and wait for ACK

pkt[i] goes slow route and timeout occurs
retransmit, now takes fast route

got #2, send ACK
send pkt[i+1], wait for ACK

pkt[i+1] is lost
slow pkt[i] arrives
send ACK

get wrong ACK for pkt[i+1] oops ... sorry ...
but assume it got there

12Jim Binkley

more problems
fixed timer may be permanently too slow
for a given end to end path
– make it too long, and you are inefficient if a

packet is lost
– too short and it will never work

what if two processes both write a data
packet and then read for an ACK?
how does the server handle > 1 client

13Jim Binkley

UDP versus TCP?
grasshopper: “Master, isn’t UDP more
efficient than TCP?”
master: “Sure, if monologues are better than
dialogs!”
IMHO - TCP vs UDP is a big case of “it
depends” both have pros/cons
interesting problem: only have 1-way
channel, how do you make it reliable?

14Jim Binkley

some study questions
efficiency? what does tcp do here?
what more does TCP do that we haven’t touched
on?
is pos. ack. with retransmission good for a reliable
multicast protocol (1 to N)?
how do you detect that your end point is down?
why does TCP use a 3-way handshake to initialize
the connection?
why can’t you use a 3-way handshake at the end
of a connection?

