
1Jim Binkley

Sun’s NFS - Network File
System

TCP/IP class

2Jim Binkley

outline
◆ intro

– rpc
– xdr

◆ NFS architecture
◆ NFS protocol
◆ some administrative aspects

3Jim Binkley

intro - NFS
◆ NFS - Network File System
◆ requirement on UNIX systems, supported

elsewhere as well (pcs)
◆ goal is for files on remote server to appear

as if they are mounted locally on client
◆ hence clients can share
◆ RFCs for NFS exist but have been deemed

historical

4Jim Binkley

intro - NFS
◆ built on top of Sun RPC mechanism,

“Remote Procedure Call”
◆ RPC gives us client/server focus
◆ RPC gives a functional interface with

parameters that client’s may call
◆ looks like local function call but is remote

(using TCP or UDP) as transports
◆ note that NFS uses UDP mostly

5Jim Binkley

intro - NFS
◆ byte order problems dealt with by XDR, a data abstraction

language
◆ XDR - external data representation, functions and

structures may be declared and compiled down to “stub”
code for clients and servers

◆ programmer must provide functionality, but mindless
work of dealing with network byte order is taken care of

◆ basic rpc paradigm

– client request f(x,y) sent to server, server
carries out and returns ACK or value/s

6Jim Binkley

Remote Procedure Call

client server

f(x,y)

read params,
decode
carry out
encode result
return ACK/value

call f()
 encode params
 write to server
 read from server
 decode result
 return

7Jim Binkley

XDR - external data representation

◆ very much like C, way to declare structures
and functions, feed to compiler

◆ rpcgen defs.x -> C code
◆ couple with rpc library can handle

“marshalling” (encoding/decoding) of
◆ data structures, function parameters, return

values

8Jim Binkley

writing a structure across the Net
◆ struct s {

char s;
 int x;
 char buf[100;
} s;

◆ not only do we have little-endian, big-endian
problem but we have

◆ compiler offset problem too
◆ what is offset of int x above? 2/4/8?

9Jim Binkley

two mechanisms to deal with it
◆ ASCII headers (http/ftp/tar/nntp/smtp)
◆ TLV (RPC, SNMP, IP/TCP options)

(Type = INT, len = 4, value)
(Type = DOUBLE, len = 8, value)
(Type = BYTES, len = n, bytes...)

10Jim Binkley

intro - how it works from user POV

◆ mounting
– client mounts remote file system which must be

exported a priori by server
mount foo.com:/usr/src /remote/src
(mount remote_dns:path local_path)

◆ after that, you just use it
% cd /remote/src
% ls

◆ should be able to mount any directory

11Jim Binkley

NFS architecture
◆ NFS is built on top of RPC/XDR/UDP
◆ “stateless” compared to TCP
◆ UDP also felt to be faster as efficiency is

important since NFS is compared to local
disk speeds (unfair, but so it goes)

◆ servers presumed local if not on same link
◆ over WAN, SLIP, might need NFS over

TCP (exists but rare)

12Jim Binkley

NFS architecture
◆ so servers and clients shouldn’t be too far

apart
– NFS adds to congestion...

◆ encapsulation like so :

data!ethernet IP UDP RPC

13Jim Binkley

NFS architecture
◆ assume SunOS, how did NFS change

traditional UNIX?
◆ introduced notion of “virtual file system”
◆ + 2-3 protocols needed (using RPC/XDR)

– mount protocol
– NFS protocol (read/write data)
– locking protocol (neglect)

14Jim Binkley

client - Virtual File Systems

os

applications, sh(cd), ls, cp, mv, rm, etc.

NFS vnode
driver +
RPC/XDR

VFS
instances

generic file system: vnode abstraction

udp/ip/enet

UFS (unix)
file system

scsi disk
driver

msdos
file system

cdrom
file system

driver driver

15Jim Binkley

server
◆ can think of it as thread that reads/decode RPC messages

(read/write, etc.)
◆ takes RPC message and e.g., on UNIX translates them into

UNIX i/o calls, open(2), close(2), read(2), write(2), etc
◆ reality - server is stateless as possible, no concept of

“open”
◆ server is called at boot as nfsd, typically 4/8/10/12 threads,
◆ each makes a system call and executes in the operating

system for reasons of efficiency

16Jim Binkley

server-side message dispatch

nfs daemons: UDP reads are atomic, one 1 UDP port shared
between 4,8,16 processes

port 2049: nfs port

UDP input Q: RPC messages
(read/write/link/unlink)

read

from net

17Jim Binkley

client parts
◆ o.s. support (virtual file system)
◆ biod - bio “cache” daemons for typical

UNIX style read-ahead, write-behind.
– app reads 1 byte, o.s. reads 8k

◆ statd and lockd for locking

18Jim Binkley

server parts
◆ nfsds, in quadruplets (4,8)
◆ mountd, weak authentication for remote mount
◆ portmapper, RPC uses “port mapping”

– name service really, maps program numbers to
(transport, port) pairs (both tcp/udp supported)

– remote mount must contact portmapper to get port for
mountd

– portmapper is at well-known port 111

◆ /etc/exports, possibly export daemon

19Jim Binkley

/etc/exports
◆ entries something like:

/usr/bart -access=heyman:dude,root=dude
/usr/bob -access=venus:flytrap

◆ if you change it, how do you notify mountd
SunOs: /usr/etc/exportfs -a
BSD: kill -HUP mountd.pid

◆ typically non-permitted root accesses are
done as user “nobody”

20Jim Binkley

plus utilities
◆ showmount - query remote or local mount

daemon to see what is exported/what is
mounted

◆ nfsstat/nfswatch - stats
◆ rpcinfo - look at portmapper setup, what is

“mapped” in terms of programs
◆ spray - test capacity of nfs server, see if nfs

packets are dropped (look at netstat -s)

21Jim Binkley

protocol goals
◆ why UDP? and not TCP?

– can support more clients if sockets not tied up in o.s.

◆ major goals: efficiency and statelessness
– want to be able to reboot server after crash and have

clients not have to remount/login
– RPC calls are as idempotent as possible, i.e., call 2

should not depend on state of preceding call 1 (no
open/read/close)

◆ interoperability

22Jim Binkley

to achieve the goals
◆ use RPC protocol on top of UDP,

request/response
» con: early versions were ping/pong protocols

◆ stateless handles are passed back to client from
some RPC calls (surrogate of open) but don’t
mean anything to client (mean something to
server)

◆ UDP is fast too. For whatever reason, NFS has to
compete with local disk access

» con: UDP checksums may not be done

23Jim Binkley

mount protocol
◆ client mount command will contact server

mount daemon for mount permission (and
to get handle for remote volume)

◆ /usr/include/rpcsvc/mount.x on SunOs
◆ XDR for mount command:

fhstatus
MOUNTPROC_MNT(dirpath) = 1;

24Jim Binkley

mount protocol commands (ops)
◆ MOUNTPROC_MNT - mount a dir
◆ MOUNTPROC_NULL - rpc ping
◆ MOUNTPROC_DUMP - list of mounts
◆ MOUNTPROC_UMNT - umount one
◆ MOUNTPROC_UMNTALL
◆ MOUNTPROC_EXPORT - tell exports
◆ showmount calls DUMP/EXPORT

25Jim Binkley

NFS protocol commands (not all)
◆ NFSPROC_NULL - ping
◆ NFSPROC_GETATTR - stat(2)
◆ NFSPROC_SETATTR - chmod/chown(2)
◆ NFSPROC_LOOKUP(diropargs) - “open”
◆ NFSPROC_READLINK - symlink contents
◆ NFSPROC_READ - read(2)
◆ NFSPROC_WRITE - write(2)

26Jim Binkley

and more...
◆ NFSPROC_CREATE - create file
◆ NFSPROC_REMOVE - remove file
◆ NFSPROC_RENAME - mv file
◆ NFSPROC_LINK - create hard link
◆ NFSPROC_SYMLINK - BSD symlink creation
◆ NFSPROC_MKDIR - create directory
◆ NFSPROC_RMDIR - exterminate directory
◆ NFSPROC_READDIR - readdir(3)

27Jim Binkley

a few data structures
struct fattr {

ftype type; /* file type */
unsigned mode; /* protection mode bits */
unsigned nlink; /* number of hard links */
unsigned uid; /* owner uid */
unsigned gid; /* owner gid */
unsigned size; /* size in bytes */
unsigned blocksize; /* preferred block size */
unsigned rdev; /* special device */
etc...
nfstime atime, mtime, ctime; /* timestamps */

}

28Jim Binkley

data structures...
struct sattr { /* settable attributes */

unsigned mode;
unsigned uid, gid;
unsigned size;
nfstime atime;
nfstime mtime;

}
struct readargs {

nfs_fh file; /* opaque 32-bit file handle */
unsigned offset; /* seek offset into file */
unsigned count; /* how much i/o */
unsigned totalcount; /* total read count from this offset */

}

29Jim Binkley

actual XDR for a few calls

diropres
NFSPROC_LOOKUP (diropargs) = 4;

readres
NFSPROC_READ (readargs) = 6;

diropres
NFSPROC_CREATE(createargs) = 9;

30Jim Binkley

basic operation
◆ % cat file; i.e., open/read/close will be

translated into some set of:
– NFSPROC_LOOKUP() - client calls this for

each link in pathname, gets directory or final
link vnode (handle) back

– NFSPROC_READ to read the file. The offset
and handle is in every READ call

◆ note: no opens and closes

31Jim Binkley

statelessness
◆ server keeps no state about client transactions
◆ clients know they did a mount - can do mount

multiple times (crash/reboot), server doesn’t really
care

◆ client doesn’t need mount if server crashes
◆ each request must completely describe operation.
◆ read is idempotent
◆ remove is not...

32Jim Binkley

statelessness - con
◆ server must write block to disk immediately

- no typical UNIX style write cache
◆ slows writes down
◆ some vendors can offer NVRAM to buffer

blocks for better performance

33Jim Binkley

retransmission/reliability
◆ at RPC level, NFS will retry
◆ client system call will by default “hang” until

server reboots if no ack; calls are synchronous
◆ udp checksum/ethernet checksum is only csum.

assumption is that client/server are fairly local
◆ BSD nfs/udp now has elements of TCP, slow

start, etc.
◆ BSD nfs available over TCP. need a client that

can do that.

34Jim Binkley

file handles
◆ returned by lookup/create/mount
◆ used by read/write/readdir
◆ create on server, passed to client as “magic

cookie”
◆ per server encoding of info server needs to find

file; e.g.,
◆ UNIX: (device, inode number, nonce)
◆ non-UNIX server would use different semantics
◆ client cannot understand cookie, just use it

35Jim Binkley

file handles
◆ lookup must be done label by label on client
◆ “namei” process on client UNIX system

/a/b/c -> /, a, b, c is end
◆ consider if we mount

 mount server1:/usr/local /usr/local
 mount server2:/usr/local/bin.mips usr/local/bin

◆ then client must lookup
/usr/local/bin/ls and cross from server1 to server2

36Jim Binkley

file handles can lose “freshness”
◆ file handle may become “stale” if client1 is

using it (cat file)
◆ and client2 or server process removes file

37Jim Binkley

mount options
◆ number of options given that affect basic

operation, typically passed in at mount time
◆ rw/ro - readwrite or readonly volume
◆ bg - if mount fails, keep trying in background
◆ retrans/timeo - number of times to retransmit, with

a given timeout per resend. timeout in 10’s of a
second

◆ read/write basic buffer size. default typically 8k
(result is ip fragmentation)

38Jim Binkley

hard/soft option
◆ hard/soft/”spongy”
◆ hard - client RPC call must hang in client kernel

until completion. Process CANNOT interrupt call
(say with signal)

◆ hard - emulates a missed disk interrupt and a dead
disk; we hang until the server reboots

◆ soft - system call (read/write) is interruptible
(emulates flakey local disk!)

39Jim Binkley

hard/soft cont.
◆ if you are doing an ls, soft is ok
◆ if you are doing a cp, soft may not be ok
◆ you believe that all apps check read/write for

errors and take corrective action?
◆ users get frustrated with having shells hung

though because /usr/local/bin is on a crashed NFS
server

◆ sun’s advice: hard for read/write, soft for
readonly, many sites don’t pay attention

40Jim Binkley

spongy? what the heck...
◆ on BSDI and OSF/1 systems, try and

combile best of hard/soft
◆ hard except that

stat/lookup/fsstat/readlink/readdir ops can
return an error,

◆ so write NO, read YES, can possibly
minimize NFS problems

41Jim Binkley

other topics - automounter
◆ automounter

– helps support large net installations
– auto mounts file systems when needed and unmounts

when not used for a while
– “mostly transparent” to users, you have to know the

name... you can’t cd there and do an ls
– client-side “fake” server, intercepts request and mounts

remote server
– can support redundant file systems as well
– “amd” better than sun’s product

42Jim Binkley

other topics - security
◆ /etc/exports allows export of dir /something

to system X
◆ as usual, only export what you need to

export, don’t export everything
◆ security here is ip address security, subject

to ip address spoofing
◆ secure RPC/kerberos other possibilities

	Sun’s NFS - Network File System
	outline
	intro - NFS
	intro - NFS
	intro - NFS
	Remote Procedure Call
	XDR - external data representation
	writing a structure across the Net
	two mechanisms to deal with it
	intro - how it works from user POV
	NFS architecture
	NFS architecture
	NFS architecture
	client - Virtual File Systems
	server
	server-side message dispatch
	client parts
	server parts
	/etc/exports
	plus utilities
	protocol goals
	to achieve the goals
	mount protocol
	mount protocol commands (ops)
	NFS protocol commands (not all)
	and more...
	a few data structures
	data structures...
	actual XDR for a few calls
	basic operation
	statelessness
	statelessness - con
	retransmission/reliability
	file handles
	file handles
	file handles can lose “freshness”
	mount options
	hard/soft option
	hard/soft cont.
	spongy? what the heck...
	other topics - automounter
	other topics - security

