Mobile Networking

Jim Binkley- jrb@cs.pdx.edu
outline

- introduction
 - problem space
- Mobile-IP - RFC 2002
- problems/solutions &
- PSU solutions for some problems
 - security/redundancy
- one whacky idea
- research areas
but 1st - a commercial

- PSU/DARPA project
 “Secure Mobile Networks”
- try to combine Mobile-IP/IPSEC network security/Wavelan wireless LAN
- focus on security and survivability
- e.g., MIP has single point of failure in Home Agent, therefore developed
- HARP - Home Agent Redundancy Protocol
project home page

- http://www.cs.pdx.edu/research/SMN
- includes FreeBSD based
 - FA-oriented Mobile-IP
 - IPSEC integrated with Mobile-IP
 » HA/MN 2-way ESP tunnels
 - Wavelan drivers: ISA/PCCARD
 » old and IEEE 802.11
 - simple less insecure ad hoc routing protocol
 » replacement for ARP
problem space

- mobile systems as opposed to fixed systems
- wireless or multi-interface as opposed to wired infrastructure
- current systems designed to stay put from OS up/down
- applications/transport/network/link layer
 - assumptions favor wired/fixed systems
Some problems - net stack POV

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>App layer</td>
<td>DNS* works at boot/rich bandwidth</td>
</tr>
<tr>
<td>Transport layer</td>
<td>TCP disconnect=congestion</td>
</tr>
<tr>
<td>Network layer</td>
<td>IP address -> subnet locality, network design</td>
</tr>
<tr>
<td>Link</td>
<td>Wireless metrics/bandwidth/reachability</td>
</tr>
</tbody>
</table>

*and manual configured?!
certain high-level problems

- multiple interfaces and networking, where again you have an assumption that you don’t change i/ifs (or IP addresses)
 - o.s. objects bound to immutable lower objects
 - Novell server knows your mac -- change cards?
- security - dumb end station no longer sheltered by firewall (still a problem)
- finding information on the road that applies only to travelers
3 mobile net design prototypes

- roaming; e.g., IEEE 802.11 wireless,
 - beacons from Access Points
 - STAtions login to A.Ps
 - IP subnet/connection problems ignored
- DHCP per subnet
 - can give you DNS (pro)
- Mobile-IP
- your idea here ...
IEEE 802.11 - roaming

APs

router

station/moving thru cells
pros/cons

◆ pros
 – claimed interoperability

◆ cons
 – can’t span IP subnets
 – one security model: mac addresses known a-priori
 » mac addresses are spoofable
 – bridge-centric (bridges leak)
 – loading factor of wireless devices low
virtual lans

- vlans might save it
 - campus-wide external (outside) vlan model
 - must be top-down switch infrastructure

- more cons of wireless devices
 - too expensive
 - APs really too expensive
DHCP-model (sitzkreig mobility)

APs

subnet A/ip A

router

subnet B/ip B

station/moving thru cells
DHCP model

- everytime you go to new subnet - you must replug (per subnet IP address)
- can co-exist with roaming model
- (may exist but) no well-known way to dynamically do this other than user-initiated
- can work with ethernet as well as wireless
- con: loss of connections on move
- security model: overall same as mobile-ip
 - however DHCP exchanges are unauthenticated
understand

◆ DHCP is an auto-discovery protocol
◆ not a routing protocol
 – can give you local default router
◆ gives you router/DNS/subnet mask/IP address
 – IP address is leased
 – perhaps time here should be shorter than 1 day
 » 1 hour?
Mobile-IP

- rfc2002 - way too long to produce, standards trk
- basic goal: defeat the IP address fixed at a link problem; i.e.,
- invariant: the Mobile Node may retain a “home” IP address that does not change from link to link
pros for MIP

◆ easily change same-domain links - no bureaucracy
◆ IP address hides link-layer details; e.g., beaconsting (or link discovery) is now MIP property
 – FA beaconsting makes for faster handoffs (mcast doable)
◆ DNS name binding fixed
 – keep same name, change IP hard due to caching
◆ TCP connection may be retained across links - can’t change peer state easily
pros (but worthy of argument)

- NO A.P. (wireless bridges) need apply
 - do it with routers to minimize flat universe + broadcast/security/multicast flooding problems
- extends IP address space
 - (IP away, IP at home) == 64 bits
 - you need never go home
 - (or 256 in the case of Ipng) - JOKE!
- meta-pro: IP address as name is useful
cons

◆ IGP or EGP (cross domain)?
 – if latter then huge security problems
◆ isn’t DHCP way more cool?
 – slightly different problems
 – DHCP doesn’t preserve an IP address
 – make case that both are needed for adaptable MN
 – FA or DHCP admin easier?
◆ fundamental attack on IP subnet model (pro?)?
◆ surprise: didn’t solve all possible mobility problems
protocol

- MIP is a routing protocol that consists of:
 - 1. **link discovery** via advertisements or solicitations (ICMP router advert + MIP part)
 - 2. **forwarding via tunnels** (IPIP) from Home Agent to Foreign Agent/Mobile Node
 - 3. **MIP UDP registration protocol**
 » UDP request/UDP reply
 » MN (to FA) to HA and back again

- network layer - but app daemons
jargon/entities

- **MN - Mobile Node** (say, a laptop or peripatetic toaster)
- **HA - Home Agent** (router at “home” IP subnet)
 - when at home, normal IP
 - when away, HA forwards packets to your remote site
- **FA - Foreign Agent** (aka base station, router at “foreign” link/subnet, where you wandered to)
 - ids link, and serves as tunnel endpoint
- **CH - Correspondent Host**, any peer end system
- **COA - care of address**, where you wandered to
2 basic MIP topologies

◆ #1: FA-MIP: MN assumes FAs exist at subnets that are “elsewhere”

◆ #2: COA-MIP: MN acts as own FA, must be able to acquire local IP address on foreign FA-less link,
 – say via DHCP
 – or PPP dynamic IP allocation
 – or manually (ethernet config, SLIP)

◆ local net admin will determine which is available MN should adapt to link

◆ MN could use DHCP for opt. info in all cases
link discovery

- agents (HA/FA) may send ICMP router advertisements with MIP extension
- MNs can hear and make decisions about who to use
- MN may send solicitation, but agent beacons enable faster handoff
- FA beacon provides FA COA + local link IP address (may/may not be same)
beaconing - radio POV
MIP registration

- MIP protocol consists of UDP registration/ack message on port 434
- at home MN tells HA it is home - HA cancels any “AWAY” tunnels/state
- treated as normal IP
- at FA, MN sends FA UDP registration (includes FA COA + HA address)
- FA proxy forwards to HA, and back to MN
MN - HA registration at home

MN → UDP deregistration → HA

HA ACK → HA

HA → wired infrastructure

PSU/OGI 25
at FA

UDP registration/port 434

FA acts as application gateway to forward UDP registration to HA, MN tells HA that it is at FA
possible FA architecture/wireless

ethernet:ppp

real IP: and COA

wireless:

private IP: (10.0.0.1)

non MIP systems can only attack FA
don’t waste IP address on FA side

PSU/OGI
registration result: MN/HA

- HA knows that MN is at (COA IP, MN IP)
- uses IPIP(4) tunnel (or GRE etc...) to forward packets send to MN at home to FA
- FA is tunnel endpoint
- FA strips outer IP header and delivers inner IP datagram to local MN
- if no-FA case, MN acts as own tunnel sink
IPIP tunnel, HA to MN

Dear COA

FA

IPIP tunnel

IP outer

HA

IP inner

ip src = HA
ip dst = COA

ip src = X
ip dst = MN

ip datagram

note: IPIP is unicast, not multicast MBONE/DVMRP
MIP TOPO Overview

home ip subnet

Foreign Agent 1 (FA)

ip tunnel

Foreign Agent 2

Mobile Node (MN)
routing note

◆ packets to MN when AWAY are forwarded by HA to COA; i.e., local link surrogate
◆ MN must keep HA appraised of that COA, when it moves, tell HA about change
◆ fundamental MIP only deals with packets “to” the MN
◆ packets from the MN are routed normally; i.e., MIP need not apply
MIP UDP packet authentication

- shared symmetric MD5 128 bit key
- MN/HA, MN/FA, FA/HA authentication all may exist
- not dynamic, but manual key
- implemented with TLV at end of registration/reply packet
- IP address, SPI as indices
- 2 kinds of replay protection, TS, nonce
3 MIP security/net topos?

- **interior**: FA based for quick handoff, DHCP optional for local info (DNS server, printer)
- **exterior**: (for guests), DHCP a requirement so that MNs can get local address?
 - net admins must consider local security
- **on the road**: must be FA based for quick handoff and cell discovery.
problems ...

- MIP is IP-layer, a step up but not silver bullet for all known mobility problems
- triangle routing may be considered a problem (or an advantage ...)
- subnet && mobility a problem
 - wireless link and subnet != reachability
 - MN from subnet X/Y can’t talk directly
- security security security
problems

◆ o.s. flexibility for MIP support may be put to test - implementation issues
 – bind i/f X (IP address) to subnet Y (FA)
 – change default route dynamically (MN)
 – arp issues
 – do tunnel out and tunnel in (HA/FA/MN)
◆ HA is possible single point of failure (fate-share)
security

◆ within-enterprise
 – wireless links may be deemed less secure
 – have you heard of TEMPEST?

◆ without-enterprise
 – laptop && owner abroad have shed home firewall - need own protection
 – enterprise must have insecure subnet for visitors; i.e., visitors can’t attack internal nets
 – policy must evolve ... from no visitors allowed
security (more ...)

- MN/HA shared manual keys are scalable but
 - FA/HA (especially > 1 HA at a site)
 - FA/MN are not

- need dynamic lookup say via DNS or Kerberos like system
 - BBN MOIPS/PSU digsig both DNS based

- need security for all MN packets
triangle routing
triangle routing, cont.

◆ IPv6 to fix - CHs need to told about MN move and tolerate (COA, MN) tuple
◆ on the other hand, from security POV
◆ may not want to fix it
◆ make the MN always appear to be at home
 – don’t tell strangers where you are going ...
 – MN might always tunnel*back* home
 – 2T routing :->
problem: subnet/reachability

- problems that MIP does not address
- call it the “subnet != link problem”
- if B can hear A/C, B can’t assume A can hear C (radio) (it’s not ethernet)
 - ICMP redirects are hazardous ...
- two MNs with different IP and radio sitting on top of each cannot talk with traditional IP/subnet/ARP (need router/FA)
PSU - simple Ad Hoc #1

- everybody beacons - MNs and agents
- overload ICMP router discovery with extra info
- authenticate (MAC src, IP src) with shared MD5 symmetric key (optional but we do it)
- if you hear a beacon, and you can authenticate it, then and only then install link-layer route
- if you don’t install route, X can send you packets but you won’t send X any

note: you don’t speak ARP any more (IP/enet)
2 MNs at a FA - problem #1

MN2
ip subnet=Y

MN1
ip subnet=X

MNs have DIFFERENT IP subnets, but could hear each other and talk direct
note: impossible with conventional IP subnetting, what if no FA? (with our ad hoc can still talk...)
problem #2

- 2 MNs with SAME subnet, one at HOME and one AWAY
- can’t talk to each other with ARP/subnetting because obviously aren’t on same link & not even close

MN1
subnet=X

MN2
subnet=X

FA
HA
problem #3: ARP spoof

\[
\begin{align*}
\text{good} & \quad \text{MN} \\
\text{ip} = 1.1.1.1 & \quad \text{ip} = 2.2.2.2 \\
\text{MAC}=0:1:2:3:4:5 & \quad \text{ip} = 1.1.1.1 \\
\end{align*}
\]

\[
\begin{align*}
\text{agent} & \quad \text{ip tunnel} \\
\text{ip} = 1.1.1.1 & \quad \text{ip} = 2.2.2.2 \\
\end{align*}
\]

\[
\begin{align*}
\text{bad} & \quad \text{MN} \\
\text{ip} = 1.1.1.1 & \quad \text{ip} = 1.1.1.1 \\
\text{0:1:2:6:6:6} & \quad \text{0:1:2:6:6:6} \\
\end{align*}
\]
bad MN can send out promiscuous ARP overwrite that only FA can hear

FA will overwrite ARP cache for good MN, with bad MN’s MAC address

bad MN can steal MIP tunnel and thus evade MIP UDP registration authentication even when MN-FA registration required

good MN may not be able to hear bad MN promiscuous ARP overwrite ...

upshot is now need to do MAC spoofing
arp spoof, cont

◆ spoofing now only possible if MAC the same,

◆ call it “MAC spoof”

◆ party attacked will get attackers packets since they share a unicast link address ...

◆ increases odds that attacked party can learn about attack
problems: beacon scalability

- MN conference == scalability problem?
- I live for that day ...
- solution/s:
 - 1. scale back MN/MN beaconing
 » might answer solicitation (tricky problem)
 - 2. MN pushes beacons (or combines with) MIP FA registration, ignores other MNs when in crowd, so MN/FA only. FA could tell loading
mobile security

- large problem area
- MN when going away must take site security/policies with it
- traditional firewall measures now have TWO new considerations
 - 1. our side abroad (home MN away)
 - 2. friendly visitors here (visitor MN here)
mobisec issues (more than this)

◆ 1. MN may choose to secure its own data to/from HA or to/from CHs, not just MIP registration security (all data)
◆ 2. site security must somehow setup visitor quarantine network - net design issues
 – can include internal wireless of course
◆ 3. scalability of MIP authentication itself an issue; especially FA/(HA,MN)
security/routing chicken/egg problem

- assume you want to do a 3-way handshake to setup a dynamic 1-way security association

- you need secure routing to do that; i.e., how to setup security if routing is unsecured?

- arp attack is trivial example of problem

- makes obtaining public keys or 3-way security handshakes hard(er)
data security via IPSEC

◆ 1st-cut policy && implementation
 – MN/HA 2-way IPSEC tunnels over FA
 – “don’t talk to strangers” FA is man in the middle
 – when at home, MN/HA == link-layer security
◆ IPSEC (RFCs 1825-), not just IPng
 – AH, authentication header (md5/sha)
 – ESP, confidentiality (DES, ...)
over FA (a long long way to run)

Secure 2-way tunnel ACROSS FA

Authentication + encryption of most packets

Mobile Node

PSU/OGI
over FA: MN to HA with ESP

<table>
<thead>
<tr>
<th>outer IP</th>
<th>ESP</th>
<th>IP datagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip src=MN\n ip dst=HA</td>
<td>ESP\n spi for MN to HA</td>
<td>ip src=MN\n ip dst=X</td>
</tr>
</tbody>
</table>

default route to FA (next hop router), has itdst to HA
ip_output adds **IPSEC tunnel/ESP**
HA to MN

1. need IP | ESP insertion for IPSEC tunnel from HA to MN
2. need outer MIP IP header for HA to FA
 note: could have AH or ESP between two headers for HA/FA relationship

PSU/OGI
IPSEC manual key

- **scalability** is of course an issue and key lifetime
- ISAKMP/Oakley are IPSEC answers for using public key technology to
 - dynamically generate security bindings
 - create session keys
- have demonstrated use of ISAKMP between MN/HA for 2-way tunnel
redundancy outline

◆ ad hoc
 – # 1 (done), link layer (no router needed)
 – # 2 - multi-hop protocol, call it MADrp
◆ HA redundancy (have > 1 at a time) - HARP (HA Redundancy Protocol)
◆ FA redundancy
 – improved wireless handoff (done)
 » tolerate overlapping Fas ... avoid FA spoof
 – use > 1 router at a time (not released yet)
wireless handoff + redundancy

- use wavelan signal strength + heuristics
- go for best agent over period X (say ten seconds)
- stick with him and don’t bounce around
- agents at MN sorted by SN
- mark Foreign Agent as bad if we don’t get HA ack from it, try another
agent signal strength
ad hoc #2 - MADrp

- multi-hop ad hoc routing protocol
- MNs as routers
- MADrp - *Multicast Ad hoc Demand routing protocol* (MAD for short, or MAD-DRIP)
- works with Mobile-IP so that MN can talk to Internet
- can setup IPSEC tunnels MN/MN if keys installed a priori due to auth. madrp pkts
HA redundancy

- view as critical for MIP, one HA is **single point of failure**
- if current HA goes down, your MIP net is lost
- **FATE SHARING ALL OVER AGAIN**
assertions:

- HAs may be on same link but ideally are not
 - probably not too far apart though, but would like to shield against 2 HAs lost due to 1 router (or 1 enet card) failure
 - shared subnet, so can’t be on OPPOSITE sides of Inet (barring a bridge technology)
- HAs should keep each other up to date with simple relatively stateless protocol
- *no MODS to MIP (MNs/FAs won’t know)*
plan:

- assume two HAs, each of which is a router and routes to the same (partitioned) mobile-IP subnet
- normal dynamic IP unicast routing can deal with this
whacky idea: HOME MIP

ISP can easily provide MIP services with HA at ISP location.

PPP + FA

router, say ip = 1.1.1.1
for PPP i/f

radio connection
ip = 10.0.0.1 (private net)

DNS works...

MIP instead of NAT/proxy?!

useup IP addresses in subnet

mobile laptop
ip = home ip,
2.2.2.2

PSU/OGI 63
at HOME MIP

- MNs need never go home
- can allocate ALL of IP addresses in subnet
- simply use nearby tunnels from ISP term mux to “settop/ppp/FA” and in-house MNs
- MN is 2nd/3rd laptop/telephone/toaster
- this is because MIP addresses are (IP,IP)
- 2nd enhancement: PSU simple ad hoc enables MN/MN communication where subnet doesn’t matter
research areas

◆ security
 – MNs dynamically take policy with them on the road
 – scalability of keys and policy negotiation
◆ richer data environments for on the road types
◆ MN flexibility in terms of multihomed, multi-device, multi-address
◆ wireless flexibility/loading/thruput
◆ multicast (not as done by MIP) routing AND apps
◆ ad hoc routing, MNs find a way to get there