
1Jim Binkley

IP layer - Internet Protocol

TCP/IP class

2Jim Binkley

IP - Internet Protocol

◆ intro
◆ IP addresses
◆ subnetting
◆ header

– fragmentation, ttl, options
◆ routing/algorithms/architecture
◆ CIDR/IPng

3Jim Binkley

intro - IP version 4

◆ fundamental TCP/IP protocol
◆ RFC 791, other related RFCS

– Inet checksum, rfc 1071, 1141, 1624
– path mtu, rfc 1191
– ip datagram reassembly 815
– 1122, communications

4Jim Binkley

ip layer - fundamental idea

◆ ip implements a ip virtual network on top
of different kinds of hw where ip address is
endpoint

◆ hw is hidden by network layer (except for a
few things like MTU)

5Jim Binkley

what does ip do (and not do?)

◆ sends and recvs packets to/from ip
addresses - ip datagrams

◆ no retries, doesn’t promise reliable delivery
◆ packets due to various reasons may be lost,

duplicated, delayed, delivered out of order,
or corrupted -

◆ best effort - don’t lose them on purpose but
only when nets busy - resources unavailable

6Jim Binkley

ip functions
◆ route packets

– routing: process of determining path for data
– ip routes packets when they come to it from

» transport layer (down stack)
» link layer (up stack) - we are router and forward

pkts

◆ fragmentation acc. to link-layer MTU
◆ handle ip options
◆ send/recv ICMP error and control messages

7Jim Binkley

ip address

◆ 32 bits, “dotted-decimal” notation
– 1.2.3.4, big-endian byte order, 0..255 is range

◆ associated with interface, not machine
◆ if machine > 1 i/f, then multi-homed
◆ if multi-homed, not necessarily router
◆ ip address in UNIX assigned to i/f with

– #ifconfig ed0 inet 131.253.1.2 netmask 255.255.255.0

8Jim Binkley

ip address structure

◆ each address has structure in it:
(network, subnet, host)

◆ classically address consists of (net, host)
portions

◆ subnet mask used to determine subnet part
– taken from host bits
– ipaddress & subnet mask

9Jim Binkley

type prefix bytes range

class A 0 1 net:3 host 1-126.h.h.h

class B 10 2:2 128-191.n.h.h

class C 110 3:1 192-223.n.n.h

class D 1110 flat 224..239

class E 11110 - 240..254

ip address table (net/host)

class D: multicast
class E: experimental (unused at present), note 255 used

for broadcast

10Jim Binkley

ip addresses - examples
◆ 0.0.0.0 - if src, then boot == “this net, this host”

 if dest, old 4.2 BSD broadcast address
◆ 127.0.0.0 - localhost (loopback)
◆ 1.2.3.4 - class A
◆ 143.1.2.3 - class B
◆ 201.1.2.3 - class C
◆ 224.0.0.1 - multicast
◆ 255.255.255.255 - limited broadcast
◆ 200.0.1.255 - directed broadcast (assume subnet == class

C part)

11Jim Binkley

ip address - problems

◆ assigning class by bit means class A takes
1/2 of range, class B 1/4, class C 1/8, etc.

◆ problems with current setup
– class assignment is wasteful
– ip host addresses not necessarily utilized well
– too many networks in core routers
– running out of ip addresses ??

12Jim Binkley

the ip pie - not a picnic

class A

class B

class C

Dip pie slices
acc. to Class

why was this a mistake?

13Jim Binkley

subnetting

◆ subnet - use single IP network address to
hide multiple physical nets

◆ subnet notion converts (net, host) into
slightly more hierarchical (net, subnet, host)

◆ associate subnet mask with i/f ip address
◆ Example, class B, one byte of subnet:

ip = 148.1.1.1 subnet=255.255.255.0

14Jim Binkley

subnetting
◆ subnetting functions:

1. you can subnet an ip address and split it up on
separate networks across routers (conserve
address space)
2. you hide your routing structure from remote
routers, thus reducing routes in their routing tables

◆ if dest ip addr & subnet mask == my ip addr and
subnet mask

dest is on same subnet
else on different subnet (send pkt to router)

E
th

er
ne

t

E
th

er
ne

t

Router

Internet

net .1
net .2

192.1.2.3
192.1.2.4

148.1.1.254/255.255.255.0
148.1.2.254

255.255.255.0

148.1.2.1

148.1.2.2
255.255.255.0

148.1.1.1
255.255.255.0

router
To 148.1.X.X
via 192.1.2.3

Class B Subnet
Example

16Jim Binkley

subnetting homework assignment
◆ assume your ISP gives you 1 class C network address,

200.0.1.X
◆ assume your router’s ip address to outside world (Internet)

is 134.3.1.2
◆ design a subnetting scheme that will allow approximately

30 hosts per subnet
◆ draw a picture, show ip addresses and subnet masks for all

router ports. Assume the router ports == #subnets + 1
◆ show one host on one of the subnets with ip address,

subnet mask, and broadcast address

17Jim Binkley

ip encapsulation

ethernet hdr ipv4 header data (tcp, etc.)

20 bytes (no options)

18Jim Binkley

ip header
0 15 16 31

vers:4 hlen:4 TOS:8 total length:16

ip datagram ID:16 flags:3 fragment offset:13

TTL:8 proto type:8 ip header checksum:16

ip source address:32

ip destination address:32

ip options (if any) 32 bit aligned

19Jim Binkley

ip header
◆ ip version == 4
◆ header length in 32-bit words, h == 5 with no

options (20 bytes)
◆ type of service and precedence

– not used much in past but starting to be used
– bits 0-2, precedence
– bits 3-5, TOS, hint to routing about how to queue

» D (bit 3) - low delay (telnet),
» T (4) - high thruput (FTP), R (5) - reliability

20Jim Binkley

ip header
◆ total length - max ip datagram is 64k
◆ fragmentation

– fragment ip_id stays the same for all fragments
» ip_id ids the logical IP datagram and all its parts

– flags (DONT_FRAGMENT, MORE_FRAGMENTS)
– fragment offset from 0 start of packet, e.g.,
– 0, 0x400, 0x800
– ip length is length of fragment, not total datagram

21Jim Binkley

fragmentation - how it works
◆ ip fragments because outgoing packet is too big

for MTU of i/f
◆ fragments must be reassembled at final ip

destination and can be fragmented again on way
◆ if any fragment lost, all of datagram must be

resent (not by IP)
◆ IP uses best effort even to allocate internal buffers
◆ TCP tries to avoid, UDP not smart enough
◆ IP fragmentation not a STRONG mechanism

22Jim Binkley

ip fragmentation
incoming pkt,
 total size = 1520,
data = 1500 bytesMTU = 1500

fragment 0, offset = 0, size = 1480
 + 20 for ip header (1500), MF

fragment 1, offset = 1480, size = 20
 + 20 for ip header (40 in all)

slip i/f, MTU = 296
what will happen ?

ip dst

ip_id, ip_src retained in all (new) fragments

23Jim Binkley

even more fragmentation

◆ reassembly done at ultimate destination
– pros:

» simplicity - fragments can be routed independently
» simplicity - intermediate routers don’t have to store

– cons:
» any fragment lost, entire datagram lost
» philosophical - is this really hiding the link layer ?

◆ path MTU is a way around
◆ note: routers may not see all fragments

24Jim Binkley

fragments and the MSS

◆ MSS - maximum segment size == 576
◆ IP fragmentation up to this size guaranteed

to work
◆ UDP apps often do not exceed this size
◆ TCP often uses PATH MTU, ignores this

size - TCP will try local MTU (often 1500)
and try to make it work end/end

25Jim Binkley

ip header

◆ proto type - TCP, UDP, ICMP
◆ checksum

– over header only, useful?
– same algorithm used by tcp/udp
– with ip itself, only over header

» deemed not useful in IPv6

– routers must redo IP checksum since ttl
changes

26Jim Binkley

ip checksum

◆ sender
– ip checksum field = 0
– add together by 16-bit words and take one’s

compliment (1’s compliment arithmetic)
– store in ip cksum field

◆ recv
– adds N sections, complements result, should

get 0, else error

27Jim Binkley

ip header - ttl

◆ TTL - time to live, actually hop count, not
time

◆ when packet crosses router
– ttl--
– if ttl == 0

» discard and send ICMP ttl exceeded to ip src

◆ important guarantee that datagrams will
be discarded even if network loops

28Jim Binkley

ip options

◆ not very used and possibly not very useable
◆ variable length encoding mechanism
◆ form of TLV or tag/length/value (data)
◆ options come in multiples of 32 bits
◆ ignore packet format details
◆ pro: extensible format
◆ con: not as easy to parse as fixed format

29Jim Binkley

option types

◆ end of option list
◆ noop - used for alignment
◆ military ?
◆ loose source routing: specify inexact path
◆ strict source routing exact path (with ip

addresses)
◆ record route - possibly useful
◆ gather timestamps

30Jim Binkley

sassing options

◆ encoding is not efficient for routers
◆ length is limited by IP header length - not

big enough for size of Inet diameter
– 60 bytes max, if 4 byte IPs == 15 ip addr total
– e.g., record route could not work > 15 hops

◆ source routing not secure -- someone could
stick in a intermediate route and spy on
your packets

31Jim Binkley

routing

◆ routing - the process of choosing a path
over which to send datagrams

◆ hosts and routers route
◆ input: ip destination address
◆ output: next hop ip address

and internally an interface to send it out
◆ routing does not change ip dest address

32Jim Binkley

how do routes get into routing
table?

◆ static routes - by hand, on unix with
% route to_dest via_next_hop

◆ dynamically via routing daemon, routed or
gated on UNIX, protocols=RIP/OSPF/BGP

◆ via ICMP redirect

33Jim Binkley

show routing table

◆ unix host
– % netstat -rn

» n is for NO dns, else you may cause DNS queries

◆ cisco router
– (router) show ip route

34Jim Binkley

routing table
◆ entries logically

(destination, mask, via gateway, metric/s)
◆ destination - network or host address
◆ mask - subnet mask for dst address
◆ via gateway - next hop (maybe router)
◆ metric/s - depends on routing table algorithm and

dynamic routing protocols

35Jim Binkley

manual adds to routing table

◆ on FreeBSD unix host:
– # route add default 204.1.2.3 (default route)

» internally default has value 0.0.0.0 (all dsts)

– # route add 1.1.1.1 2.2.2.2
» 2.2.2.2 is the next-hop router for 1.1.1.1
» we must have direct connection to 2.2.2.2 (i/f must

be on same subnet and must exist)
» # ifconfig ed0 2.2.2.1 (our i/f must exist)

36Jim Binkley

SOME possible kinds of routes

◆ host, 210.1.3.21/32 (to specific host)
◆ subnet, 131.253.1.2/24 (to specific subnet)
◆ network, 131.253.0.0/16 (to specific net)
◆ default route - normally the router on a net,

send it here when nothing else matches
– expressed internally as 0.0.0.0

◆ note: default route to host route - least
specific to most specific (natural ordering)

route daemon

to via i/f
to via i/f
to via i/f

routing table

forward

output

input

IP

link layer

transports

route

add
routes

icmp
redirect

ip just uses routing
table

external entities
change it

routing architecture

38Jim Binkley

netstat -rn - UNIX example

Destination Gateway Flags Rfct Use if
127.0.0.1 127.0.0.1 UH 4 541053 lo0
131.252.20.0 131.252.20.183 U 148 225888 le0
131.252.21.0 131.252.21.183 U 92 182083 le1
default 131.252.20.1 UG 1 12 le0
131.252.10.17 131.252.20.2 UGHD 0 10089 le0
192.220.224.0 131.252.20.1 UG 0 0 le0
192.147.168.0 131.252.20.1 UG 0 0 le0
158.104.0.0 131.252.20.1 UG 0 0 le0
192.147.160.0 131.252.20.1 UG 0 0 le0

note: and more, RIP in use

39Jim Binkley

routing algorithm/s

◆ there is no *one* routing algorithm
◆ over time, notion that match should go with

longest prefix has come into being
◆ default < net < subnet < host < broadcast

– host is longer prefix than net than default
◆ algorithms vary from (too) simple to

hardware-assisted (commercial routers)

40Jim Binkley

some examples

◆ dumb pc routing algorithm (example)
◆ linux (1.2.x/1.3.x) - linear search
◆ old BSD style, 2 tables, host > net and

routes to i/fs in table, hashing for speed
◆ new BSD style, Patricia tree algorithm,

supports longest matching prefix
◆ commercial routers - proprietary, hw cache

support

41Jim Binkley

dumb pc algorithm

consider “to” part, the KEY for every entry
Assume one i/f and we have its subnet mask
we have one default router ip address

if (ip dst & subnet mask) == (KEY ip & subnet mask)
do “direct” routing; i.e., deliver to i/f

else
do “indirect” routing, send to default router

Note: this algorithm implies you can’t talk to a different subnet
on the same link

assumptions:

algorithm:

42Jim Binkley

supernetting/CIDR

◆ early 90’s -- too many class B addresses
given out - running out of ip network
addresses?

◆ decision made to allocate blocks of class C
instead - many nets at one set; hence
supernetting

◆ downside would be more routes in routing
tables

43Jim Binkley

Classless Internet Domain Routing

◆ pronounce “cider” -> do away with classes
◆ allocate contiguous power of 2 blocks
◆ represent in route table by (net, mask)

where the mask indicates a range of
addresses

◆ think of this in simplified form as {base+
offset}; e.g.., net 4, +4 ([4..7] inclusive)

44Jim Binkley

CIDR continued

◆ routing algorithm must support longest
prefix match for destination

◆ more specific better than less specific router
(host route better than subnet)

◆ put another way, /32 better than /24
◆ caused rewrite of most os routing

algorithms and dynamic routing protocols
– e.g., BGP-3 became BGP-4

45Jim Binkley

thus at least two CIDR tricks
◆ 1. supernetting - aggregation “up”; i.e.steal bits

from network portion
◆ e.g., multiples of class C nets
◆ 2. subnetting (aka Variable Length Subnet

Masks); i.e., steal bits from the host portion
◆ VLSM can be used to subnet a subnet

– e.g., class C assumes 24 bits of mask
– divide that up into half (/25) and half again

(/26)

46Jim Binkley

network range notation
◆ express CIDR block in slash notation
◆ ip prefix/length of net mask

– assume contiguous bits, never discontiguous

◆ class A, thus 1.0.0.0/8
– netmask is 255.0.0.0

◆ class B, thus 128.1.0.0/16
– 255.255.0.0

◆ class C, 192.1.2.0/24 (255.255.255.0)

47Jim Binkley

CIDR conversion table
/15 255.254.0.0 2 class B
/17 255.255.128.0 128 class C
/18 255.255.192.0 64 class C
/24 255.255.255.0 1 class C
/25 255.255.255.128 1/2 class C
/26 255.255.255.192 1/4 class C
/31 255.255.255.254 1/128 class C

48Jim Binkley

VLSM can be used

◆ to subnet subnets, ad infinitum
◆ e.g., given 192.1.2.0/24
◆ can break up class C subnet into two parts
◆ 192.1.2.0/25 and 192.1.2.128/25
◆ student exercise: take 192.1.2.0/25 and

break it up into two /26 subnets
◆ this works as long as all boxes speak CIDR

49Jim Binkley

examples: explain and think
about

◆ 131.252/16 (PSU class B)
◆ 131.252.208.0/20 would mean what? range is?

– supernet or VLSM? how much of class B is this?

◆ 131.252.215.3/32 (host route)
◆ 131.252.215.0/24 (VLSM or supernet?)
◆ 131.252.215.32/28, range is?
◆ 207.98.0.0/17 - how many class C addr?

– range on latter is 0.0 - 207.98.127.255

◆ 0.0.0.0/0

50Jim Binkley

assume previous slide is routing
table with IP destinations

◆ which entry is chosen for each dst?:
◆ 1. 131.252.215.3
◆ 2. 131.252.215.4
◆ 3. 131.252.215.34
◆ 4. 131.252.215.0
◆ 5. 131.252.216.1
◆ 6. 131.252.1.1
◆ 7. 207.98.102.128, or 8. 207.98.240.1

51Jim Binkley

NFS/UDP dump - decode IP
etherfind -x -v -between nfsserver nfsclient
1. UDP from server.2049 to client.1022 8300 bytes (only
1480 bytes long) (more fragments)
08 00 20 02 20 f2 00 00 3c 00 19 56 08 00 <- ethernet
45 00 05 dc ba 65 20 00 1e 11 91 2e 8f b9 06 01 8f b9 06 0a
 (udp, etc...)
find ip tos, len, id, flags, offset (0), ttl, proto, src/dest ip

2. UDP fragment offset = 1480, length = 1480, MF set
(ignore ethernet, look only at IP)
45 00 05 dc ba 65 20 b9 1e 11 90 75 8f b9 06 01 8f b9 06 0a

52Jim Binkley

NFS/UDP - IP fragmentation
3.4.5. 3 fragments, length = 1480, MF set

last fragment:
6. UDP fragment offset = 7400, length = 900
45 00 03 98 ba 65 03 9d 1e 11 af d5 8f b9 06 01 8f b9 06 0a

note: MF is off, id still == ba65

53Jim Binkley

study questions
◆ decode previous NFS/UDP dump at ip layer
◆ construct class C subnet as asked previously
◆ ISP gives you two class C subnets but you have ONE

wire. How do you make all hosts talk to each other?
◆ take previous class C/VLSM example and divide /25 into

/26. what happens if you run RIPv1 on that net?
◆ refer to the previous class B subnet picture. If the subnet

mask is wrong and == 255.255.0.0 and a host on one
subnet tries to talk to another, what would happen (assume
dumb pc routing algorithm)?

54Jim Binkley

more study questions
◆ what would 0.0.0.0/7 mean?
◆ why is 1.0.0.0/7 wrong? (think about it in terms of

base 2 and draw a picture of the bit/s)
◆ say you have network 131.252.215.0/24

break it up into 8 subnets of equal size
– what are ranges and directed broadcast addresses?

◆ take previous 8 subnets and make it into 7
subnets, 1 of which has twice the host IPs

◆ make up an example where you use supernetting

	IP layer - Internet Protocol
	IP - Internet Protocol
	intro - IP version 4
	ip layer - fundamental idea
	what does ip do (and not do?)
	ip functions
	ip address
	ip address structure
	ip address table (net/host)
	ip addresses - examples
	ip address - problems
	the ip pie - not a picnic
	subnetting
	subnetting
	subnetting homework assignment
	ip encapsulation
	ip header
	ip header
	ip header
	fragmentation - how it works
	ip fragmentation
	even more fragmentation
	fragments and the MSS
	ip header
	ip checksum
	ip header - ttl
	ip options
	option types
	sassing options
	routing
	how do routes get into routing table?
	show routing table
	routing table
	manual adds to routing table
	SOME possible kinds of routes
	# netstat -rn - UNIX example
	routing algorithm/s
	some examples
	dumb pc algorithm
	supernetting/CIDR
	Classless Internet Domain Routing
	CIDR continued
	thus at least two CIDR tricks
	network range notation
	CIDR conversion table
	VLSM can be used
	examples: explain and think about
	assume previous slide is routing table with IP destinations
	NFS/UDP dump - decode IP
	NFS/UDP - IP fragmentation
	study questions
	more study questions

