SNMP (v1 mostly) MIB intro

Network Mgmt/Sec.

Jim Binkley
Outline

- MIB-2 and subgroups
 - introduction
 - system, ip, etc.
 - snmpwalk handout
- MIB-2 extensions
- reality checks
MIBS/rfcs of interest

- **MIB-II RFC 1213** - defines several hundred basic agent objects, system, interfaces, ip, etc (snmp v1 too)

- **transmission Ethernet Interface MIB - EtherLike MIB - RFC 1643**
 - defines ethernet-like data-link layer objects

- **note snmp v2 mib RFC 1573 redefined interfaces group**
re MIB-2, and SNMP v2 changes

- split MIB-2 up
- system, now in SNMPv2-MIB, 1907
- interfaces, replaced by IF-MIB, 1573
- ip/icmp, IP-MIB, and IP Forwarding MIB, 1354, 2011
- tcp, TCP-MIB 2012, udp, UDP-MIB 2013
- transmission, no change
- snmp, SNMPv2-MIB, 1908
- and note that lots of implementations don’t care
top part of OID tree

iso(1)
org(3)
dod(6)
internet(1)

directory(1) X.500
mgmt(2)
mib-2(1)
experimental(3)
private(4)
enterprises(1)

Jim Binkley
note: at least 3 areas of interest

◆ MIB-2 snmp v1 itself (*evolved in snmp v2*)
 – system - 1.3.6.1.2.1.1 { mib-2 1 }
 – interfaces
 – ...
 – snmp { mib-2 11 }

◆ extensions to MIB-2 (next slide)

◆ enterprise/private MIBS themselves
 – cisco universe of its own

Jim Binkley
MIB-2/v1 basic sub-trees (1--11)

- **system** - { mib-2 1 } (who am i ... and where am i)
- **interfaces** - { mib-2 2 } (caveat emptor, v2)
- **at** - { mib-2 3 } (toast)
- **ip** - { mib-2 4 } (addresses, stats, arp, route tables)
- **icmp** - { mib-2 5 }
- **tcp** - { mib-2 6 } (note connections)
- **udp** - { mib-2 7 }
- **egp** - { mib-2 8 } (egp is history, now bgp)
- **cmot** - { mib-2 9 } (composted toast)
MIB-2/v1 basic sub-trees (1--11)

- **transmission** { mib-2 10 } (ethernet stats)
- **snmp** - { mib-2 11 }
interesting idea/s ...

- as we look at these think about them from both:
 - admin POV (“how can I learn useful facts about the system”)
 - defender POV (“what can I learn about intrusions ...”)

- and think about how they are implemented
 - how can snmp mib itself be implemented?

Jim Binkley
IETF extensions to MIB-2 tree

- many kinds of standard/noble attempt objects have been added over the years to the MIB-2 line of IETF objects
- may or may not be implemented
- e.g.,
 - appletalk
 - OSPF
 - RMON (a universe in a few mibs)
 - IF-MIB

Jim Binkley
MIB-2 IETF extensions table

- appletalk, mib-2 13, rfc1243, rfc1742
- ospf, mib-2 14, rfc1253, rfc1850
- bgp, mib-2 15, rfc1269, rfc1657 (bgp-4)
- rmon, mib-2 16, rfc1271, rfc1757
- bridge (dot1), mib-2 17, rfc1493
- decnet, mib-2 18, rfc1289
- character, mib-2 19, rfc1316
- repeater, mib-2 22, rfc1516
- rip-2, mib-2 23, rfc1389
- ident, mib-2 24, rfc1414

Jim Binkley
MIB-2 IETF extensions table

- host resources, mib-2 25, rfc1514
- 802.3 mau, mib-2 26, rfc1515
- if-mib, mib-2 31, rfc1573
- dns server, mib-2 32, rfc1611
- ups, mib-2, mib-2 33, rfc1628
- sna-nau, mib-2 34, rfc1666
- etherlike, mib-2 35, rfc1650
- atm, mib-2 37, rfc1695
- modem, mib-2 38, rfc1696
- printer, mib-2 43, rfc1759

Jim Binkley
MIB-2, v2 mib extensions exist

- (later) ...
- but e.g.,
 - IP-MIB, mib-2 48, rfc2011
 - tcp-mib, mib-2 49, rfc2012
 - udp-mib, mib-2 50, rfc2013
 - entity-mib, mib-2 47, rfc2037
MIB check on cisco router

- basic MIB-2 mibs exist plus
- 13 - appletalk
- 14 - ospf
- 17 - bridge (dot1)
- 31 - if MIB
- 34 - sna
- 37 - atm
- 47 - entity mib
MIB-mining

- looking in extended mib-2 mibs OR
- enterprise mibs
- for genuinely useful objects ...
 - examples:
 - cisco traffic meter on cisco switches
 - cisco temperatures in environmental mibs
 - cisco router/load average values
 - interfaces, if names to snmp port numbers
MIB-2 design criteria (rfc 1213)

- objects must be essential
- only “weak” control objects are allowed
 - no object called “reboot” (catch on fire)
 - lots of RO objects, but can you cause a TCP disconnection or remove a RT entry?
- avoid duplication in objects
- nothing system specific (no BSD unix)
 - note: ucd/unix and hp/unix host mibs (sequent too)
- avoid heavy instrumentation of critical code areas

Jim Binkley
system, mib-2 1

- overall info about the system
- sysDescr - 1 - string - RO
- sysObjectID - 2 - OID - RO
- sysUpTime - 3 - TimeTicks - RO
- sysContact - 4 - string - RW
- sysName - 5 - string - RW
- sysLocation - 6 - string RW
- sysServices - 7 - integer - RO
thou shalt set

- contact
- name
- location
- do this for the next person or the vacation replacement ...
- this is one reason repeaters should be managed (where the heck is it?)
interfaces

- basically a table of entries per interface
- basic facts and counters for input/output of packets, all RO
- note some parts are "deprecated"
 - ifOutQLen (not widely implemented)
 - ifInNucastPkts, ifOutNucastPkts
 - ifSpecific (ignored is more like it)
interfaces, mib-2 2

◆ ifNumber (1)
◆ ifTable (2) (the table)
 – ifEntry (1) (the row)
 » ifIndex (1) - snmp interface index elsewhere too
 » ifDescr (2) - hopefully manu. interface name
 » ifType (3) - integer, int/string table lookup exists
 » ifMtu(4) - max packet size
 » ifSpeed(5) - gauge
 » ifPhysAddress(6) - MAC

Jim Binkley
interfaces.ifTable.ifEntry, cont.

- ifAdminStatus(7), up/down/testing (configured)
- ifOperStatus(8), up/down/testing, hw reality
- ifLastChange(9), in TimeTicks, when i/f entered op state
- ifInOctets(10) - packet count in IN BYTES (MRTG)
- ifInUcastPkts(11) - unicast packet count in
- ifInNUcastPkts(12) - broadcast + multicast pkts in
- ifInDiscards(13) - no errors, but had to discard (overflow?)
- ifInErrors(14) - errors therefore tossed
- ifInUnknownProtos(15) - no network-layer protocol
- ifOutOctets(16) - bytes sent out interface (MRTG)

Jim Binkley
cont.

- ifOutUcastPkts(17)
- ifOutNUcastPkts(18)
- ifOutDiscards(19)
- ifOutErrors(20)
- ifOutQLen(21) - length of output pkt queue
- ifSpecific(22) - OID
notes:

- 1. snmp port mapping to interface name (presumably ifEntry) terribly important
 - need it for MRTG
 - not necessarily a sensible integer order
 - beware dynamic interfaces
 - new modules that cause all ports to move

- bugs certainly exist here (or discrepancies)
 - Sun/solaris ifInOctets/ifOutOctets notorious
 - cisco ifInNUcastPkts,ifOutNUcastPkts

Jim Binkley
network interface types (some)

- values in ifType are integer
- known string mappings include:
 - other 1
 - ethernetCsmacd 6
 - iso88025TokenRing 8
 - fddi 15
 - ppp 23
 - ds3 30
 - hssi 46
ip, mib-2 4

◆ what was in at table (arp ...) moved here
◆ boolean + counters + three tables
◆ tables include:
 – ipAddrTable - ip unicast/bcast/netmask per i/f
 – ipRouteTable - dest,nexthop,mask, metrics, type
 – ipNetToMediaTable (it’s the arp table, jim)
ip mib-2 4, start with counters

- ipForwarding(1), RW, 1 == router, 2 == not a router
- ipDefaultTTL(2), RW
- ipInReceives(3), includes errors
- ipInHdrErrors(4)
- ipInAddrErrors(5), ip dst on recv invalid
- ipForwDatagrams(6), # of forwarded datagrams
- ipInUnknownProtos(7), recv packet but no protocol
- ipIndiscards(8), lack of buffer space, of interest in router?
- ipInDelivers(9), # of packets sent to tcp/udp upstairs
- ipOutRequests(10), transport pkts delivered down to us

Jim Binkley
more ip

- ipOutDiscards(11) - pkts tossed due to lack of buffer space
- ipOutNoRoutes - pkts tossed due to no route
- ipReasmTimeout - ip reassembly timeout failure
- ipReasmRedqs - fragments that needed reassembly
- ipReasmOKS - # of packets reassembled
- ipReasmFails - # of reassembly failures
- ipF fragsOK - # of packets fragmented ok
- ipF fragsFails - pkts discarded due to DONTFRAGMENT
- ipF fragsCreates - # of fragments created
- ipAddrTable, ipRouteTable, ipNetToMediaTable
- ipRoutingDiscards(23), tossed routing table entries (?)
ipAddrTable (index in bold)

◆ formally == UNIX # ifconfig -a
◆ ipAddrTable - it is all READONLY
 – ipAddrEntry
 » ipAdEntAddr, IP address (192.1.2.3)
 » ipAdEntIfIndex - snmp interface index (2)
 » ipAdEntNetMask, IP address (255.255.255.0)
 » ipAdEntBcastAddr, INTEGER, how many bits to bcast (least significant bit count)
 » ipAdEntReasmMaxSize - biggest packet can reassemble
can this capture

- > 1 IP addresses on the same physical interface???
- sometimes called helper address or IP alias or virtual address
- one to many with one physical i/f, many IP addresses
ipRouteTable, curiously R/W

- ipRouteEntry (row)
 - ipRouteDest, IpAddress - dest ip
 - ipRouteIfIndex - interface index
 - ifRouteMetric1-5, INTEGER, meaning depends on protocol type (hop count, etc)
 - ipRouteNextHop, IpAddress (gateway)
 - ipRouteType, integer, note can mark invalid
 - ipRouteProto, integer, RO
 - ipRouteAge, how old route is in seconds
 - ipRouteMask, IpAddress
 - ipRouteInfo, OID, RO
functional equivalent

- WNT in dos box, netstat -rn
- UNIX, almost universal, netstat -rn
- Cisco, show ip route
ipRouteType values

- other(1) - none of the following
- invalid(2) - route marked invalid
- direct(3) - destination is on directly connected subnet
- indirect(4) - destination is across next-hop router
ipRouteProto

- other - none of the following
- local - manually configured
- netmgmt - network management protocol
- icmp - icmp redirect
- rip
- ciscoIgrp
- ospf
- bgp
some comments on this

- one destination may not be enough
 - ipForward, RFC 1354 tries to replace
 - ipForward is \{ ip 24 \}, comes after
 ipRoutingDiscards

- ipForwardNumber introduced to count # of entries (I wish ...)

- overall similar but index now is 4-tuple
 - dest/policy (tos)/nexthop/protocol
can we delete a routing table entry?

♦ in general, hard to predict what can be done about deleting a row

♦ however routing table and arp table both have invalid values
 – ipRouteType set to invalid
 – ipNetToMediaType set to invalid

♦ result is implementation specific

♦ consider security DOS consequences
ipNetToMediaTable

◆ arp table equivalent
◆ arp -a
◆ however index is 2-tuple
 – ipNetToMediaIfIndex, INTEGER
 – ipNetToMediaNetAddress
 – hopefully this serves as clue to which way (in terms of multi-homed home) ip X/MAC X can be found
arp table

- ipNetToMediaIfIndex, INTEGER
- ipNetToMediaPhysAddress, PhysAddress
- ipNetToMediaNetAddress, IpAddress
- ipNetToMediaType, INTEGER
 - other(1), invalid(2)
 - dynamic(3), ARP ... or whatever
 - static(4), “published”, proxy arp possible
icmp, mib-2 5 - RO

- just counters for inbound and outbound traffic
- icmpInMsgs(1)
- icmpInErrors(2)
- icmpInDestUnreachs(3) - host getting dest. unreachables
- icmpInTimeExcds(4)
- icmpInParmProbs(5)
- icmpInSrcQuenches(6)
- icmpInRedirects(7)

Jim Binkley
ping, ping, ping, ping, etc...

- icmpInEchos(8) - # received of “pings”
- icmpInEchoReps(9) - # received of ping replies
- icmpInTimestamps(10)
- icmpInTimestampReps(11)
- icmpInAddrMasks(12)
- icmpInAddrMaskReps(13)
- icmpOutMsgs(14)
- icmpOutErrors(15) - msgs not sent due to errors
 - **icmpOutDestUnreachs**(16) - router # of lack of routes
 - **icmpOutTimeExcds**(17) - router # of traceroutes?

Jim Binkley
more icmp

- icmpOutParmProbs(18) - hah ...
- icmpOutSrcQuenches(19)
- icmpOutRedirects(20)
- icmpOutEchos(21)
- icmpOutEchoReps(22)
- icmpOutTimestamps(23)
- icmpOutTimestampReps(24)
- icmpOutAddrMasks(25)
- icmpOutAddrMaskReps(26)
tcp, mib-2 6

- all RO except for table column entry tcpConnState, which is RW integer
- tcpRtoAlgorithm(1) - how retransmit timer works
- tcpRtoMin(2) - min value for retransmit timer
- tcpRtoMax(3) - max value for retransmit timer
- tcpMaxConn(4) - max # of total tcp connections
- tcpActiveOpens(5), counter, count of active opens so far
- tcpPassiveOpens(6), counter, count of passive opens so far
- tcpAttemptFails(7), counter, failed conn. requests
notes

- active open is actually “transition to the SYN-SENT state”
- passive open is actually “transition to the SYN-RCVD state”
tcp, more

- tcpEstabResets(8), # of resets recv in established state
- tcpCurrEstab(9), or CLOSE-WAIT, # open now
- tcpInSegs(10) - packet count in, includes errors
- tcpOutSegs(11)
- tcpRetransSegs(12) - total # of retransmitted segments
- tcpConnTable(13) - index is 4-tuple (tcp socket)
 - tcpConnEntry (row) (next slide for column entries)
- tcpInErrors(14) - total number of pkts with errors
- tcpOutRsts(15) - # of resets sent
connection table is RW!

- tcpConnState, INTEGER, RW
- tcpConnLocalAddress, IpAddress
- tcpConnLocalPort, INTEGER
- tcpConnRemoteAddress, IpAddress
- tcpConnRemotePort, INTEGER
- index == ip addresses + ports (all 4)
tcp connection state values

- closed(1)
- listen(2)
- synSent(3)
- synReceived(4)
- established(5)
- finWait1(6)
- finWait2(7)
- closeWait(8)
- lastAck(9)
- closing(10)
- timeWait(11)
- deleteTCB(12)
udp, mib-2 7, all RO

- udpInDatagrams(1) - total # pkts upstairs
- udpNoPorts(2) - recv. pkts but no port
- udpInErrors(3) - errors other than NoPorts
- udpOutDatagrams(4) - # sent
- udpTable(5), index is both column objects
 - udpEntry(1)
 » udpLocalAddress(1), IpAddress (listener)
 » udpLocalPort(2), listener port #
udp note

- no attempt to track opposite udp “talker” in terms of HER port number
- 1 -N mapping
- actual input count is sum of 1st three counters
 - udpInDatagrams + udpNoPorts + udpInErrors
note host/router dichotomy

- ip/icmp end to end at home, and probably mostly a matter of forwarding at router
- udp/tcp end to end by definition, wouldn’t mean much at a router (except for attack exposure...)

Jim Binkley
transmission

- interface mib doesn’t go far enough in terms of link-layer stats
 - e.g., no collisions, “runts” for ethernet
- must be link-layer specific
- therefore RFC1643, Etherlike-MIB
 - never mind the Etherlike part, it’s ethernet Jim
- aka dot3 (802.3)
Gaul has 2 tables this time

- **dot3 (transmission 7)**
 - `dot3StatsTable(2)`
 » `dot3StatsEntry`
 - `dot3CollTable(5)`
 » `dot3CollEntry` (indexing affected by SNMPv2)
 - `dot3Tests(6)` - not a table, but a non-leaf node
 - `dot3Errors(7)` - not a table, but a non-leaf node
 » errors that may occur during test
dot3StatsTable/Entry - all RO

- dot3StatsIndex, INTEGER - index, same as ifIndex in interfaces group
- dot3StatsAlignmentErrors - alignment errors
- dot3StatsFCSErrors - checksum errors
- dot3StatsSingleCollisionFrames - sent OK, 1 collision
- dot3StatsMultiplecollisionFrames - sent OK, > 1 coll.
- dot3StatsSQETestErrors
- dot3StatsDeferredTransmissions - 1st attempt, had to wait
- dot3StatsExcessiveCollisions - failed, too many collisions
dot3

- dot3StatsInternalMacTransmitErrors, never mind
- dot3StatsCarrierSenseErrors
- dot3StatsFrameTooLongs ("giants"), collision evidence
- dot3StatsInternalMacReceiveErrors
- dot3StatsEtherChipSet OID
- dot3CollTable - index is interface value + CollCount
 - dot3CollEntry
 » dot3CollCount (1..16) X axis
 » dot3CollFrequencies, counter, Y axis

- dot3Tests - neglect

Jim Binkley
dot3 collision table/per i/f

Collision frequency counts per # of collisions

pkt count

Jim Binkley
snmp mib itself

◆ from host POV, application layer
◆ input/output counts
 – gets/sets/traps, etc. as basic counts
◆ note errors, including:
 – too big
 – bad community names
◆ note packets coming in can be responses
snmp, mib-2 11, almost all RO

- snmpInPkts(1)
- snmpOutPkts(2)
- snmpInBadVersions(3)
- snmpInBadCommunityNames(4) - comm. string wrong
- snmpInBadCommunityUses(5) - e.g. write with no rights
- snmpInASNParseErrs(6)
- snmpInTooBigs(8) - response with error too big
- snmpInNoSuchNames(9) - response with error no such ...
- snmpInBadValues(10) - response
- snmpInReadOnlys(11) - response is readOnly

Jim Binkley
snmp mib cont.

- **snmpInGenErrs(12)** - response with general error
- **snmpInTotalReqVars** - total OK OIDS retrieved
- **snmpInTotalSetVars** - total OIDS set by remote manager
- **snmpInGetRequests** - input get requests
- **snmpInGetNexts**
- **snmpInSetRequests**
- **snmpInGetResponses** - total get-response recv.
- **snmpInTraps** - total traps coming in to us
- **snmpOutTooBigs** - response with too big sent
- **snmpOutNoSuchNames(21)** - response with no name sent
snmp mib, cont.

- snmpOutBadValues - response sent
- snmpOutGenErrs - response sent
- snmpOutGetRequests
- snmpOutGetNexts
- snmpOutSetRequests
- snmpOutGetResponses
- snmpOutTraps - trap messages sent by us
- snmpEnableAuthenTraps - only RW - send authent. traps
 - enabled(1), disable(2)
snmp v1 criticisms

◆ security is poor
◆ danger of too much overhead if large network
 – each table column entry is one get/response pair
 – MRTG/HPOV cycle-times should be observed and made larger if necessary
◆ traps may be lost due to use of UDP
 – important reason to get manager close to core infrastructure
◆ basic MIBS may have implementation holes or holes like multicast info is lacking
some virtues

◆ network structure may be automatically discovered and displayed
 – as opposed to keeping-up by hand drawings
 – or nothing at all
◆ information can be USEFUL (in the extreme)
 – tell two HPOV stories ... and one MRTG story
 – especially if devices are managed

Jim Binkley