
1Jim Binkley

SNMP SMI
Structure of Management

Information
Network Mgmt/Sec.

2Jim Binkley

Outline
ASN.1 short intro
– BER
– grammar/types

SMI
– types and application types
– MACROs
– tables/examples

3Jim Binkley

jrb comment:
this will seem like “much ado about
nothing”
– painful, but useful taken in medicine-sized

doses
formal definition of syntax
form before content ...
Master Kung said: “the superior person
defines his/her terminology first”

4Jim Binkley

ASN.1
Abstract Syntax Notation Dot One
a formal grammar used for defining
– packet encodings

» ISO/OSI packet types (network layer and up)
CLNP - ISO IP equivalent

» IETF SNMP Packet Data Units (app layer)

– data definition language
» X.500 data
» RSA Public-Key Crypto Standards
» SNMP data (variable binding part)

5Jim Binkley

for more information see:
RSA “A Layman’s Guide to a Subset of
ASN.1, BER, and DER
– Kaliski Jr., 1993

Stallings, SNMP, etc.
– Appendix B

6Jim Binkley

ASN consists of two parts
a formal grammar that consists of productions
– A ::= B (definition of types and instances)
– syntax sugar

» e.g., comments -- this is a comment

and rules for encoding the constructs into binary
data
– Basic Encoding Rules (BER)

much like how a compiler takes a programming
language and produces object (binary) data ...
(duh)

7Jim Binkley

syntax sugar
comments
-- BLAH BLAH
-- BLECH FOO!
::= for assignment (e.g., derived types)
– OctetStringType ::= OCTETSTRING

identifiers begin with a lowercase letter
type/module references begin with uppercase
built-in types all upper case
identifiers/type names can have digits/hypens

8Jim Binkley

BER (let’s go bottom up 1st)
Basic Encoding Rules
– ISO 8825
– DER, in X.509, Distinguished Encoding, gives one

way to define BER values only

how to encode/decode values of ASN.1 types
into/from binary
basic idea: tag, length, value
roughly 1 byte tag (what is it), ASN.1 type
1 byte length (how long is it)
value: the data itself as a string of bytes

9Jim Binkley

Great Scott!
SNMP is all TLVs ...
keep in mind: mostly shipping MIB
variable names (OIDs) and values back and
forth
MIB values have an amazing tendency to
be:
– integers of various sizes
– strings “my name is Joe Bob Cisco Router”
– and a few constructs like IP addresses, etc.

10Jim Binkley

BER isn’t that simple though
3 methods for encoding an ASN.1 value
– length of data and/or number of tags in tag set

1. primitive, definite-length
– simple, non-string types
– ID is tag (class and tag #) of ASN.1 type

» 02 for INTEGER, 04 OCTET STRING (bytes)

– length, if less than 128 can fit in one byte
– value/contents, the ASN.1 value as byte string

» depends on the TYPE ...

11Jim Binkley

BER 2/3
2. constructed, definite-length encoding
– can be used for strings, structured types
– length must be known in advance via length

field (hence definite-length)
3. constructed, indefinite-length encoding
– strings, structured types, again
– difference is length field NOT used
– must look thru contents to find End-Of-

Contents, two bytes with value 0x0000

12Jim Binkley

basic simple form, and bigger tag
fields

tag/id length value

1 byte 1 byte 1..127 bytes

tag field decomposed: as one byte

tag as multiple bytes

class (2 bits) Prim/Con (1) tag # (5)

c P/C tag=11111 1 tag bits 0 tag bits
octet 1 octet 2 octet 3

13Jim Binkley

length can be long too OR
ignored (indefinite length)

0 length <= 127

multi-byte (definite)

1

one byte length (definite)

7 bits, length in bytes more bytes

indefinite form (length not included)

1 0000000 need EOC in data

14Jim Binkley

ASN tag classes
basic idea is that there are universal tags
and possible application-derived (non-
universal, local interest) tags
00 - universal
01 - application
10 - context specific (more limited context
than app)
11 - private (no standards)

15Jim Binkley

some universal class/tags
1 - BOOLEAN
2 - INTEGER (2’s complement)
3 - BIT STRING
4 - OCTET STRING (aka bytes)
5 - NULL
6 - OBJECT IDENTIFIER
7 - Object descriptor (human string - explain object)
9 - REAL
16 - SEQUENCE and /SEQUENCE-OF
17 - SET and SET-OF
27 - GeneralString

16Jim Binkley

types may be
simple - defined in terms of values
– INTEGER (say 1..127 or whatever)

structured - defined in terms of other types
– like a C structure, PERL associative array
– or set in other programming languages
– in ASN, structures may have structures (but not

in SNMP...)
– structures made up of component types

17Jim Binkley

some explanation
OBJECTIDENTIFIER
– tree-based name scheme for all ASN objects
– value is sequence of small integers

SEQUENCE - like a C structure
– ordered list of types from simpler types

SEQUENCE OF - like an associative array
– index scheme may be “interesting”
– all component types the same

SET - basically like sequence but not ordered

18Jim Binkley

some BER examples (from
Stallings)

02, 02, FF 7F (INTEGER, -129)
04,04, 01 02 03 04 (OCTET STRING,
– value is 01020304

05 00 (NULL)
1A 05 4A 6F T3 65 73 (CharacterString, 5
bytes of “Jones”
30 06, 02 01 03, 02 01 08 (SEQUENCE of
two INTEGERs)

19Jim Binkley

ASN module structure
must start with module definition
module-name DEFINITIONS ::= BEGIN

IMPORTS section
EXPORTS section
Assignments (productions) section

End
IMPORTS - from other modules
EXPORTS - definitions that can be used by
other modules

20Jim Binkley

rfc1213.txt (aka MIB-II)
p. 12 starts with this:
RFC1213-MIB DEFINITIONS ::= BEGIN
IMPORTS

mgmt, ...IpAddress, Counter, Gauge,
TimeTicks FROM RFC1155-SMI

OBJECT-TYPE FROM RFC-1212;
then some assignments ... (some :->)

21Jim Binkley

types, types, types
the term “tag” may be over-used in ASN.1
new types may be defined from old types
types may be called tagged types to create
sub-name conventions
implicit - replace old tag with new class/tag
number (derivation)
explicit - add new tag to create one
component STRUCTURE type
(encapsulation)

22Jim Binkley

type creation - example in ASN.1
speak

TelephoneNumber ::= [APPLICATION 3]
IMPLICIT INTEGER (-range..+range)
meaning a new tag/type (implicit) has the
application class, and is an integer

23Jim Binkley

CHOICE, ANY
data types without any tagging (no BER)
CHOICE when defined must include list of
alternative types
– only one will actually be used at runtime
– e.g., SNMP PDU types include CHOICE of

get-request, get-next-request, set-request, etc.
ANY is used when can’t know type in
advance

24Jim Binkley

ASN MACRO facility exists
allows designer to arbitrarily extend ASN syntax
to define new types/values
very limited use in SNMP (we’ll see it RSN)
form: <macroname> MACRO ::=
BEGIN

TYPE NOTATION/s ::= new types
VALUE NOTATION/s ::= new value type
productions ...

END

25Jim Binkley

SMI - Structure of Management
Information

ASN.1 is vast untamed grammar mechanism
SNMP seeks to simplify to smaller set of
types/constructs/and a macro or two
need simplicity in order to have a shot at
interoperability between managers/agents
RFC 1155 - Structure and Identification of
Management Information for TCP/IP-based
Internets, M. Rose, K. McCloghire, 1990

26Jim Binkley

overview
MIB tree structure
SNMP types
– universal and application-wide
– object types/OBJECT-TYPE macro

tables
a few examples

27Jim Binkley

MIB tree structure (again)
MIB variables named thru rooted tree
1.3.6.1.2.2.1(system) etc...
iso(1).org(3).dod(6).internet(1) gets us to:
directory - reserved for X.500
mgmt - IAB approved objects (MIB-2)
experimental - used to id objects used in
Inet experiments
private - used to id private-enterprise
objects

28Jim Binkley

org(3)

iso(1)

dod(6)

internet(1)

directory(1) X.500

mgmt(2)

mib-2(1)

experimental(3)

private(4)

enterprises(1)

top part of OID tree

29Jim Binkley

types in SNMP
basically integers/strings/null/object id,
some application types, and tables
(reflected in sequence/sequence-of)
tables are simple objects (barring their
index/walking mechanisms)
– cannot have tables nested in tables

full ASN syntax definition is cut back quite
a bit

30Jim Binkley

another way of looking at it:

ASN basic types NOT used include:
– BOOLEAN
– BIT STRING
– ObjectDescriptor
– EXTERNAL
– REAL
– ENUMERATED
– SET and SET OF

31Jim Binkley

fundamentally includes:
INTEGER
OCTET STRING (aka bytes ...)
OBJECT IDENTIFIER
SEQUENCE (one tuple)
SEQUENCE OF (ordered set of tuples)

32Jim Binkley

Application types
NetworkAddress - CHOICE of addrs, but
only IpAddress at this point
IpAddress - 4 bytes OCTET STRING
Counter (Counter32) - non-neg int, 2*32-1
Gauge - non-neg int (can go down)
TimeTicks - # ticks in 1/100 second since
boot
Opaque - OCTET STRING, no attributes

33Jim Binkley

application types, cont
Counter - a counter may be incremented but
not decremented. rolls over to zero at max
– example: interface bytes in

Gauge - may increase or decrease. if max,
gets stuck (latches)
– example: temperature

timetick - note that it is relative, no notion
like NTP/universal time

34Jim Binkley

from rfc1155
IpAddress ::= [APPLICATION 0]
IMPLICIT OCTET STRING (size 4)
Counter ::= [APPLICATION 1] IMPLICIT
INTEGER (0..4294967295)
Gauge ::= [APPLICATION 2] IMPLICIT
INTEGER (0..4294967295)
note: snmpv2 defines
Counter32/Counter64,Gauge32/Gauge64

35Jim Binkley

OBJECT-TYPES
a MIB is a set of OBJECT-TYPES
each defines a kind of managed object
– via a syntax description

an object instance is a particular instance
bound to a specific value
the OBJECT-TYPE macro is used to define
all MIB values

36Jim Binkley

ASN syntax:
OBJECT-TYPE MACRO ::=
BEGIN

TYPE NOTATION ::= “SYNTAX” type (TYPE
ObjectSyntax)

“ACCESS” Access
“STATUS” Status

VALUE NOTATION ::= value (VALUE
ObjectName)

...
END
some variable of some type with some value and a couple
of attributes (access/status)

37Jim Binkley

continued
Access includes:
– read-only
– read-write
– write-only
– not-accessible (can’t read or write)

Status includes:
– mandatory
– optional
– obsolete (don’t have to do it)
– deprecated (implemented but doomed)

38Jim Binkley

continued
note definition of derived type
DisplayString ::= OCTET STRING (0..255)
Indices (used with table rows) may include
CHOICE
– number INTEGER
– string OCTET STRING
– object OBJECT IDENTIFIER
– address NetworkAddress
– IpAddress IpAddress

39Jim Binkley

1.3.6.1.2.1.1.1 (an example)
mib-2(1).system(1).sysDescr(1) :
– sysDescr OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION “A textual description of the

entity. This value should include the full name
and version identification of the systems’
hardware type ... yadda yadda”.
::= { system 1 }

40Jim Binkley

constructed types give us TABLE
row: type with form:
<row> ::=

SEQUENCE {
<type>, <type>, type }

<table> :: =
SEQUENCE OF <row>

we get simple non-nestable 2-d table
IndexPart defines index mechanism for row

41Jim Binkley

example (logic not syntax garp):
mib-2.interfaces has ifTable (table) made up of ifEntry
(row)
each ifEntry defines an interface with 22 component types
e.g.,

ifTable
ifEntry

ifIndex INTEGER -- unique per i/f
ifDesc DisplayString
ifType INTEGER (e.g., enet)
ifMtu INTEGER
etc ...

