Routing Information Protocol aka (let 'er) RIP

IP Routing

outline

- intro
- theory including convergence and bugs
- rip v1 protocol
- rip v2 protocol
- Cisco config example with default route redistribution
- conclusions

protocols acc. to topology

topology	IETF	ISO/OSI
intra-link	ARP	ES-IS
intra-domain	RIP, RIP(2), OSPF	IS-IS
inter-domain	EGP, BGP(4)	IDRP, IDPR

the Interior - RIP or OSPF

bibliography

- RIPv1, RFC 1058, Charles Hedrick, 1988.
 - documented existing practice
- RIPv2, Gary Malkin, RFC 1388
 - RIPv2, RIP speaks CIDR (netmasks included with destination)
 - RFC 2453 is update, 1389 MIB, 1721-1724
 - MD5 authentication, 2082
- Huitema, Routing in the Internet, 2nd Edition,
 1999

history

- Bellman/Ford/Fulkerson and Distance/Vector idea, late 50's, early 60's
- Bellman, "Dynamic Programming", Princeton University Press, 1957
- Vector-Distance can mean IP Destination/Hop-Count (as with RIP)
- Distance in other protocols might mean something else
 - hello, TIME; BGP, A.S. path to destination

Vector-Distance

cont.

- ◆ BSD app based on XNS (Xerox) version, Netware RIP is similar too (surprise)
 - BSD 4.2 on VAX (1982 or so)
- done first and RFC 1058 (1988) later created
- in widespread use for at least two reasons
 - widely available, came with that there Sun WS
 - # routed & is (mostly) all you need to do
- ◆ BSD routed and Cornell gated support it (free)
- Cisco evolved into IGRP, and later EIGRP
- Appletalk Routing Table Maint. Protocol (RTMP)

RIP details

- messages carried in UDP datagrams, send/recv on port 520
- broadcast every 30 seconds, routing table as pairs of (to net, hop count) e.g., v1 ip dst = 255.255.255.255
- hop count, direct connect == 1, network one router away is 2 hops away
- new route with shorter hop count replaces older route
- on init, router requests route table from neighbors
- therefore two fundamental message types
 - request (done at boot. give me your routing table)
 - response (almost all messages are response)

more RIP details

- when routing response received, routing table is updated (metrics aren't typically displayed in netstat -rn unfortunately)
- route has timeout. 3 minutes, no new info, then mark with metric=16, one minute later delete (**holddown** so the fact that route is gone is propagated)
- infinity == 16, RIP can suffer count to infinity
- default route is route to 0.0.0.0
- routers are "active", hosts are "passive", determined by whether or not system > 1 i/f (can set by hand)

consider simple Interior domain

traditional UNIX workstation as router - configuration

- overly simplified ...
- router alice (border router)
 - # routed -g + static route to outside Inet
- router/s bob and charlie
 - #routed
- random workstation (not router):
 - #routed -p (passive mode, won't send)

points to ponder

- border router MIGHT have static route on serial link
 - ideally might NOT want to RIP out that i/f and waste bandwidth, annoy ISP/router neighbor
- border router sends (0.0.0.0,1) default to neighbors who can propagate to hosts
- misbehaving host might fireup
 - #routed -g
 - bring down part/all of net

Jim Binkley routers need to ignore hosts in terms of **routing filters**

study questions

- with UNIX rip, how can a border router NOT send rip update out serial i/f?
- with Cisco rip, how can a border router NOT send rip update out serial i/f?
- with a sniffer (say tcpdump) how can we watch rip updates only?
- what value is there to a host if it runs RIP, but only has one link router?
 - what if the host has two interfaces?
- at sally, what is the value of the default metric?

theory

- neighbors in mesh "tell the neighbors about the world"
- i.e., they periodically broadcast their "routing table"
- v1 routing table actually pairs of (ip dest, hop count)
- directly connected network has hop count of 1
- infinity (unreachable) is 16, 15 maximum hop count
- hosts may listen but don't broadcast
 - can learn default route dynamically
 - can learn paths to other networks if redundant routers

simple theory

writer:

- every 30 seconds send out(131.252.1.0, 1)(131.252.2.0, 2)(0.0.0.0, 3)

reader:

- read broadcast and merge with routing table
- add new tuples, or modify hop-count for existing tuples possibly including next-hop
 Jim Binkley

timers

- deletion: for each new tuple, start timer, toss if no refresh in 180 seconds
 - note: N times broadcast (6 * 30)
 - if we don't hear from you (which can happen due to collisions, noise, etc.) we forget about you
- write timer: resend every 30 seconds
- garbage timer: (Cisco), advertise with unreachable (16) for 60 seconds before deletion
- holddown: if update has higher hop count, don't forward for 180 seconds (delay bad news)

 17

RIP and control theory

- remember chicken and egg problem of routing; i.e.,
 - in absence of routing, how does routing itself work?
- rip v1 relies on UDP/IP broadcast
 255.255.255.255 (v2 uses multicast)
 - application-layer flooding, no ACKS
- in one interface and out the others (er, all, actually)
 Jim Binkley

control theory, cont.

- bottom line: RIP relies on neighbors being directly connected
- takes advantage of broadcast on media like ethernet
- broadcasts are resent at a rate greater than deletion timer (N broadcasts before tuple is deleted in routing table)

network states

- start (router or entire network) initial routing table (direct connects)
- linkdown or linkup
 - loss of router is extreme case of this
- convergence (steady state)
 - start or link change must lead here
- convergence means routers have same destinations, possibly different metrics

define convergence

how many broadcasts before convergence what do routing tables, A, B, C look like?

link down

A/C just crashed. What has to happen for convergence?

how can A learn the link to C failed?

- ◆ 1. ideally, because A has a link-layer sub-protocol that will tell it the A/C link failed
 - no such beast with ethernet possible if A's i/f fails
- ◆ 2. worst-case, A's tuple for C times out
- when A has learned that C does not exist, it will then believe B has a path
 - to C, via B, 2 hops
- note the benefits of the previous redundant mesh (compared to previous non-redundant example)

how could a link go down?

- Backhoe (link wire cut)
- interface card blows up
- router blows up
- variations on "backhoe"
 - chair runs over ethernet cable on floor 1 too many times ...
 - sys admin kicks AUI ethernet cable out of workstation and doesn't notice
- you didn't purchase the UPS after all?Jim Binkley

bouncing effect

bouncing leads to data pkt loops

- X to C link fails
- unfortunately A tells C that it has tuple (to X, cost=3) before C can tell A that link is down
- ◆ A will tell C cost to X is (X,4)
- point is that it MAY take awhile for A to discover that path thru B is "better" (and real!)
- note that data packets thru A for dst=X will be caught in a loop (IP ttl is a good idea ...)
- 2 router black hole

count to infinity

16 is a very small infinity

- ◆ A knows to C, 2 hops, via B
- B has direct connection to C, knows C is down
- before B can tell A, A tells B
 - to C, 2 hops!
 - B believes A. Joy!. A knows how to get to C!
- B tells A, to C, 3 hops
- ◆ A believes B (after all B is the way to C)
- count up to 16 before giving up
- is this likely? (murphy's law, bad news is faster)
 Jim Binkley
 28

the count of Monte RIP OFF (pun)

- infinity must be small
- limits the routing diameter, therefore scalability limitation
 - not important one though
- note two cases:
 - C is temporarily cutoff due to bouncing effect, but redundant path exists
 - no redundant path, packets will loop until infinity, at which point routers can return ICMP destination

Jim Binkleyreachable

important basic idea:

- routers can do 1 of three things:
 - 1. actually correctly route packet
 - 2. get packet, not have route, and send ICMP destination unreachable
 - » imperfect, but much better than
 - 3. get packet, and "lose it"; e.g., packet stuck in routing loop until TTL timeout
 - » no ICMP unreachable
 - » sometimes routers need to "sink" packets

count to infinity/bouncing effect

- summary: count to infinity can cause or exacerbate convergence time
 - slow convergence is possible result
- various imperfect fixups exist
 - split horizon
 - triggered updates
 - holddown
- of course, complete routing map can cure

 Jim Bithisyproblem (EIGRP or OSPF)

 31

split horizon

- split-horizon: keep track of interface thru which update came
- two ways to do this: (A to B to C)
 - 1. A to B, does not include C
 - 2. A to B, includes C with metric set to 16, this is "poison reverse" explicit negative update
- poison reverse basically: "whatever you may think, I am not the path ..."

split horizon bug

D can still tell C it knows the path to Z (thru A)

triggered update

- remember we have at least a deletion timer
 (180 seconds + possible holddown time)
 - and a write timer (30 seconds)
- if we discover failure (our own link failed or we have another clue) (or any change)
 - immediately send new information. MAY send only that information (changed tuple/s)
 - not wait for write timer or deletion timer

Jim Binkley this triggered update

pros/cons

- pros: may hopefully speed up convergence
 - or speed up count to infinity...

cons:

- 1. we could spend all of our time processing triggered updates
- 2. might trigger broadcast storm
- may hold down frequency of triggered updates; i.e., 1..5 seconds per update

holddown

- since it is likely that bad news may travel faster (we need a name for the opposite of Murphy; i.e., good luck)
- Cisco routers use holddown mechanism
- in this case, this means if recv. metric >
 current metric, may wait a bit
- if we are lucky, we might obviate count to infinity (or make slow convergence worse?)

point/s to ponder

- given fixups for count to infinity/slow convergence problems
- is RIP still so simple?
- RIP is truly: routing by rumor
- pssst... I know the way to Z
 - well, actually Bob told me the way to Z
- the protocol has some protection against routing loops -- but not much

RIP v1 encapsulation

ip src = X ip dst = 255.255. 255.255	UDP src/dst =520	RIP header + tuples
---	------------------------	---------------------

RIP(1) header

one route entry

command version(1)	must be zero			
family(2)	must be zero			
ip address				
must be zero				
must be zero				
metric: (1-16)				

up to 24 more routes, 25 routes max (< 512)

note: command: 1, request; 2, response

RIPv1 details

- UDP packets limited to 25 routing table entries,
 512 bytes
- if more entries, send more broadcast packets
- consider 131.252.222.16/28 you can't tell if this is network (subnet) or host
- you only have subnet masks bound to local interfaces
- 0.0.0.0 means default route, 16 means NO!

RIP header

- ♦ command = 1: request, 2: reply
 - typical write/update is reply (even if no request)
- version: 1 of course
- address family + 4 bytes of zero + IP addr + 8
 bytes of zero + metric == 1 tuple
- 20 bytes per tuple
- hope was other protocols might use but didn't happen

rip request

- may be sent at router boot or link boot to request routing table from neighbor
- actually two forms
 - 1. request full listing
 - 2. request specific route (debug software)
- full listing format: address family == 0, address is
 0.0.0.0, metric=16
- command = 1 (of course)
- reply is unicast to request (think of BSD Jim Birday from (2) for how to get IP addr of peer)

message processing algorithm

- read message
- do sanity checks
 - make sure IP address not loopback/broadcast
 - make sure metric in bounds
- increase metric by 1
- search routing table by destination
- if entry not found and metric not infinite
 - set ip dst, next hop ip, interface, metric
 - start 180 second delete timer

Jim Binkletøre new route in ip-layer routing table

algorithm, cont

- if recv. metric better than current metric
 - delete old entry
 - store new entry and restart timer
- if we find entry and sender is current next hop and sender's metric changed
 - change our metric, restart timer
- this is not complex enough -- e.g., have to consider triggered updates

implementation note

- e.g., on UNIX with routed
 - routed contains an application-level routing table
 - this is NOT the kernel routing table
- not unusual for their to be an updateoriented table (a routing update database)
- which may contain redundant information not stored in kernel ip routing table

e.g., consider

- we are A and we have two paths to C that have equal weights
 - routing database therefore:
 - to C, via B, 2 hops
 - to C, via D, 3 hops
- we store the route via B in our routing table and use that
- a smarter implementation may be able to

 Jim Bing the redundant information

 46

RIP(2) header

one route entry

command	version(2)	routing domain		
family(2)		route tag		
ip address				
net mask				
next hop IP address				
metric: (1-16)				

up to 24 more routes, 25 routes max (< 512)

RIP-2

- RFC 1388 (1993)
- zero fields cleverly used, should interoperate if RIP(1) ignores fields
- version is 2
- routing domain can be used to allow more than one RIP domain on a campus; more than one routed on a system
- route tag AS number, communicate boundary info (not used by RIP)
- subnet mask for CIDR, route == (ip, net mask)
- next hop, ip address for VIA part of route (as opposed to getting it from IP src)

 Jim Binkley

48

RIP-2

- clear-text password
 - better authentication exists
- can use multicasting as opposed to broadcast, thus hosts that
 - "don't give a RIP(2)" can ignore it
- send to 224.0.0.9 (all-ripv2-routers)
- remember multicast range 224.0.0.1 to
 224.0.0.255 are not forwardable and for

Jim Birddening only ...

RIPv2 routing protocol security

- possible dangers: man in the middle attack
 OR denial of server (DOS)
- MITM means somebody reroutes packets to an intermediate host for laundering
 - inject routes into routing table
- DOS means they just fill you up with junk
 - possible to distract from a real entry attack on some unfortunate victim host

conventional wisdom

- authentication is enough don't need to encrypt routing
 - especially within an IGP
- key management means we are likely to store keys in router NVRAM
 - chicken&egg problem for how router gets to access complex backend key database server

v2 authentication

- began with plaintext password
 - of course, spoofable if sniffed
 - possibly useful though to distinguish administrative zones or
 - prevent misconfigured linux host from taking down network
- RFC 2082 MD5 shared secret authentication

authenticated RIP request format

cmd = 2, vers = 2, etc.

1 word command

security header

addrfam=0xffff, type = 3 (MD5)

pkt len, key id, auth data len (16), seq #

20 byte security part

authenticated routing table entries

security trailer

addrfam=0xffff, type = 1

16-byte MD5 "hash" (not the key!)

details

- key ID identifies shared secret key on receiver (MD5 key could be hex 128 bits)
 - e.g., 0xdeadbeefdeadbeefdeadbeefdeadbeef
- sequence number iterated to prevent possibly replay attacks
- authentication mechanism typed as MD5 could be broken, replaced with new stronger version
- key is not sent, merely stored on both sides
- it is more security if per-link, but likely same key

 Jim Bipereddministration zone

 54

next hop is not me (v2 feature)

A can tell C, To X, via B normally C would infer A as next hop

synchronization problem

- Sally Floyd/Van Jacobson
 1993/SIGCOMM paper
 - network every 30 seconds was congested
 - RIP routers with no outside timing would selfsynchronize and start blasting each others broadcasts and clog up processing broadcasts
 - synchronization caused by implementation choice, result was that broadcast was not random as intended

synchronization problem

- router would fall into chain of
 - 1. receive all router packets now
 - 2. process
 - 3. then send
- over time this caused all routers to fall into same absolute send pattern
- suggestion: randomize update to 15..45 seconds
- this could be generic and widespread problem
- one should engineer-in randomness, not hope for it

consider simple Interior domain

Cisco configuration intro

router alice

```
router rip
version 1 (or 2)
network 131.252.1.0
network 131.252.2.0
passive-interface serial 0
redistribute static
default-information originate
! static route to ISP/router (WAN)
ip route 0.0.0.0 0.0.0.0 10.0.0.2
```

cont.

- bob/charlie simpler
- no static routes
- router rip (on bob)
 network 131.252.1.0
 network 131.252.4.0
 network 131.252.3.0 (stub network)
- they will pick up and distribute the default route on interior links

possible ways to ignore unwanted updates (assume alice)

use administrative distance; e.g., router rip...

distance 255 (this means ignore) distance 120 ip-for-charlie distance 120 ip-for-bob

- ACL mechanism would work too
 - block RIP on stub interface or subset therein
- or use MD5-based authentication for secure Jim Birouting protocol updates (best)

conclusions

- "RIP was intended for use in small networks with reasonably uniform technology" - Charles Hedrick
- "DV is routing by rumor"
 - A tells B about C
- RIP not smart by design (UDP analogy)
- OSPF smart by design (TCP analogy)
 - shared idea in OSPF/EIGRP, know topology

to RIP or not to RIP?

pros

- simple, stupid... (those are the cons too ...)
- easy to implement

cons

- no understanding of subnetting in v1; e.g.,
 - » 121.12.3.128 could be a host or a subnet paired with 121.12.0.0 leads rip to think what?
- convergence is slower (minutes sometimes) AND
- not as scalable as OSPF can't aggregate as well
 - » hop count max is small (not really important)

not quite concluded

- cons, cont.
 - metric notion overall not flexible
 - » cannot deal with different link types
 - not so hot with complex topologies; e.g, smart setup of multi-homed (not transit) A.S.

almost the end, really

- Cisco has considered DV not a bad technology
- ◆ IGRP has composite metric, but still classful
 - -RIP++
- ◆ EIGRP a "D/V" protocol with == complexity and features to OSPF
 - classless too

almost ...!

- really important cons
 - RIP v1, classful (OK so use V2)
 - hop-count metric brain-damaged
 - » heterogeneous links REALLY likely
 - » 10BASE, 100/1000 Ethernet
- may be OK for feeding info to hosts
- routers SHOULD definitely ignore host RIP suggestions

Jim Binkleymember "routed -g" ...

1 study question - what to do with RIP and this network?

we own routers A, B, our ISP has C we have IP address space 192.1.2.0/24, and A uses 192.1.2.0/25, B uses 192.1.2.128/25, we use RIP to talk to C, what do we say?

Jim Binkley

1. what happens if we use RIPv1?

2. RIPv2?

67