
Ourmon and Network Anomaly
 Detection

Jim Binkley
jrb@cs.pdx.edu

Portland State University
Computer Science

 2

Outline

! intro to ourmon, a network monitoring system
! network control and anomaly detection

" a TCP attack
" a UDP attack

! Gigabit Ethernet - flow measurement
" what happens when you receive 1,488,000 64 byte

packets a second?
! conclusions

 3

ourmon introduction

! ourmon is a network monitoring system
" with some similarities/differences to
" traditional SNMP RMON II

• name is a take off on this (ourmon is not rmon)
" Linux ntop

! we deployed it in the PSU DMZ a number of
years ago (2001)
" first emphasis on RMON like stats

• how many packets, how much TCP vs UDP, etc.

" recent emphasis on detection of network anomalies

 4

PSU network

! Gigabit Ethernet backbone including GE
connection to Inet1 and Inet2
" I2 is from University of Washington (OC-3)
" I1 is from State of Oregon university net (NERO)

! 350 Ethernet switches at PSU
" 10000 live ports, 5-6k hosts
" 4 logical networks: resnet, OIT, CECS, 802.11

(pubnet)
! 10 Cisco routers in DMZ
! ourmon shows 15-30k packets per second in

DMZ

 5

ourmon architectural overview

! a simple 2-system distributed architecture
" front-end probe (can easily divide load up for more)
" back-end graphics/report processor

! front-end depends on Ethernet switch port-
mirroring
" like Snort

! does NOT use ASN.1/SNMP
! summarizes/condenses data for back-end
! cp summary file via out of band technique

" micro_httpd/wget, or scp, or rsync, or whatever

 6

ourmon current deployment in
PSU DMZ

Cisco switch

A. gigabit connection to
exchange router (Inet)

B. to Engineering C. to dorms, OIT, etc.

2 ourmon probe
boxes

port-mirror of A, B, C

ourmon
graphics
display
box

Inet

 7

ourmon architectural breakdown

probe box/FreeBSD graphics box/BSD
or linux

ourmon.conf
config file

runtime:
1. N BPF expressions
2. + topn (hash table) of
flows and other interesting
topn like things +
3. some hardwired C filters

pkts from NIC/kernel BPF
buffer

mon.lite
report file

outputs:
1. bpf graphs using RRDTOOL

(stripcharts)
2. hardwired graphs using

RRDTOOL
3. topn histograms

+ syslog
+ hourly/daily reports

 8

the front-end probe

! written in C
! input file: ourmon.conf

" 1-6 BPF expressions may be grouped in a named
graph, and count either packets or bytes

" some hardwired filters written in C
" topn filters (generates lists, #1, #2, ... #N)
" all filters specified by name, which is used in the

backend to make distinct files
! output file: mon.lite

" summarization of stats
" ASCII, but very small (current 5k)

 9

the front-end probe

! typically use 7-8 megabyte kernel BPF buffer
! we only look at traditional 68 byte snap size

" a la tcpdump
" meaning HEADERS only, not data

! at this point due to hash tuning we rarely drop
packets
" barring massive syn attacks

! front-end basically is 2-stage
" gather packets and count according to filter type
" write report at 30-second alarm period

 10

ourmon.conf filter types

! 1. hardwired filters are specified as:
! fixed_ipproto # tcp/udp/icmp/other pkts
! packet capture filter cannot be removed
! 2. 1 user-mode bpf filter (configurable)
! bpf “ports” “ssh” “tcp port 22”
! bpf-next “p2p” “port 1214 or port 6881 or ...”
! bpf-next “web” “tcp port 80 or tcp port 443”
! bpf-next “ftp” “tcp port 20 or tcp port 21”
! 3. topN filter is just
! topn_ip 9

 11

mon.lite output file roughly like
this:

! pkts: caught:670744 : drops:0:
! fixed_ipproto: tcp:363040008 : udp:18202658 :

icmp:191109 : xtra:1230670:
! bpf:ports:0:5:ssh:6063805:p2p:75721940:web:1

02989812:ftp:7948:email:1175965:xtra:0
! topn_ip : 55216 : 131.252.117.82.3112-

>193.189.190.96.1540(tcp): 10338270 : etc

 12

back-end does graphics

! written in perl
! uses Tobias Oetiker RRDTOOL for some

graphs
" as used in cricket/mrtg, other apps popular with

network engineers
" easy to baseline 1-year of data
" logs (rrd database) has fixed size at creation

! top N uses histogram (our program) plus UNIX
syslog
" plus perl reports for topn data
" we keep 1 week of data

 13

hardwired-filter #1: bpf
counts/drops

this happens to be yet another SQL slammer attack.
front-end stressed as it lost packets due to the attack.

 14

2. bpf filter output example

note: xtra means any remainder and is turned off in this graph.
note: 5 bpf filters mapped to one graph

 15

3. topN example (histogram)

 16

ourmon has taught us a few hard
facts about the PSU net

! P2P never sleeps (although it does go up in the
evening)
" Internet2 wanted apps. It got bittorrent.

! PSU traffic is mostly TCP traffic
! web and P2P are the top apps

" bittorrent/edonkey
! PSU’s security officer spends a great deal of

time chasing multimedia violations ...
" Sorry students: Disney doesn’t like it when you serve

up Shrek
" PSU is a net exporter of Inet bits

 17

current PSU dmz ourmon probe

! has about 60 BPF expressions grouped in 16
graphs
" many are subnet specific (e.g., watch the dorms)
" some are not (watch tcp control expressions)

! about 7 hardwired graphs
" including a count of flow expressions

IP/TCP/UDP/ICMP, and a count of topn hash inserts
! topn graphs include:

" TCP syn’ners, IP flows (TCP/UDP/ICMP), top ports,
ICMP error generators, UDP weighted errors

" 1 ip src to many ip dst scans, 1 ip to many L4 ports

 18

ourmon and intrusion detection

! obviously it can be an anomaly detector
! McHugh/Gates paraphrase: Locality is a

paradigm for thinking about normal behavior
and “Outsider” threat
" or insider threat if you are at a university with dorms

! thesis: anomaly detection focused on
" 1. network control packets; e.g., TCP syns/fins/rsts
" 2. errors such as ICMP packets
" 3. meta-data such as flow counts, # of hash inserts

! seems to be useful for scanner/worm finding

 19

inspired by noticing this ...

mon.lite file (reconstructed), Oct 1: 2003

topn_ip: 163000:
topn_tcp: 50000
topn_udp: 13000
topn_icmp: 100000

normal icmp flow count: 1000/30 seconds

We should have been graphing the meta-data (the flow counts).
Widespread Nachi/Welchia worm infection in PSU dorms

oops ...

 20

actions taken as a result:

! we use the BPF/RRDTOOL to graph:
" 1. network “errors” TCP resets and ICMP errors
" 2. we graph TCP syns/resets/fins
" 3. we graph ICMP unreachables (admin prohibit,

host unreachable etc).
! we have RRDTOOL graphs for flow meta-data:

" topN flow counts
" topN hash inserts

! we have a new topn syns and others
" sorts by SYNS, shows FINS/RESETS

! RRDTOOL graph for syn scanner ip count

 21

daily topn reports are useful

! top N syn reports show us the cumulative
" synners over time
" if many syns, few fins, few resets

• almost certainly a scanner/worm (or trinity?)
" many syns, same amount of fins, may be a P2P app

! ICMP error stats
" show up both top TCP and UDP scanning hosts
" especially in cumulative report logs

! both of the above reports show MANY infected
systems (and a few that are not)

 22

6:00 am TCP attack - BPF net
errors

 23

topn RRD flow count graph

 24

bpf TCP control

 25

6 am TCP top syn (this filter is
useful...)

 26

topn syn syslog sort

start log time : instances: DNS/ip : syns/fins/resets total counts
end log time
--

Wed Mar 3 00:01:04 2004: 777: host-78-50.dhcp.pdx.edu:401550:2131:2983
Wed Mar 3 07:32:36 2004
Wed Mar 3 00:01:04 2004: 890: host-206-144.resnet.pdx.edu:378865:1356:4755
Wed Mar 3 08:01:03 2004
Wed Mar 3 00:01:04 2004: 876: host-245-190.resnet.pdx.edu:376983:1919:8041
Wed Mar 3 08:01:03 2004
Wed Mar 3 00:01:04 2004: 674: host-244-157.resnet.pdx.edu:348895:

 :8468:29627
Wed Mar 3 08:01:03 2004

 27

1st graph you see in the
morning:

 28

BPF: in or out?

 29

BPF ICMP unreachables

 30

hmm... size is 100.500 bytes

 31

flow picture: UDP and ICMP
mixed

 32

bpf subnet graph:

OK, it came from the dorms (this is rare ..., it takes a strong signal)

 33

top ICMP shows the culprit’s IP

7 out of 9 slots taken by ICMP errors back to 1 host

 34

and the answer is

! tcpdump on probe shows us:
! TCP syn attacker

" syn scan for port 445 (DCOM)
! UDP attacker variant of slammer

" blizzard of packets sent to port 1434
" ICMP error logs showed host IP clearly
" as did cymru report ...

 35

summary for this section

! TCP syns/fins/resets useful
" many syns, few fins, some resets sure thing

! ICMP errors useful
" especially for udp-based attack
" tcp-based attacks also will generate them
" including redirects, ttl exceeded, admin prohibited

! UDP weight notion? send-recv * error
! P2P apps have high numbers of

" Syns/Fins/ICMP
" need to better understand their architecture

 36

Gigabit Ethernet speed testing

! test questions: what happens when we hit
ourmon and its various kinds of filters

! 1. with max MTU packets
" can we do a reasonable amount of work?
" can we capture all the packets?

! 2. with min-sized packets (64 bytes)
" same questions

! 3. is any filter kind better/worse than any other
" topn in particular (answer is it is worse)
" and by the way roll the IP addresses (insert-only)

 37

Gigabit Ethernet - Baseline

! acc. to TR-645-2, Princeton University, Karlin,
Peterson, “Maximum Packet Rates for Full-
Duplex Ethernet”:

! 3 numbers of interest for gE
" min-packet theoretical rate: 1488 Kpps (64 bytes)
" max-packet theoretical rate: 81.3 Kpps (1518 bytes)
" min-packet end-end time: 672 ns

! note: the min-pkt inter-frame gap for gigabit is
96 ns (not a lot of time between packets ...)

! an IXIA 1600 packet generator can basically
send min/max at those rates

 38

test setup for ourmon/bpf
measurement

ixia 1600 gE packet
generator

1. min-sized pkts. 2 max-sized pkts

1.7 ghz AMD 2000 UNIX/FreeBSD
64-bit PCI/syskonnect
+ ourmon/bpf

ixia

Packet Engines
line-speed
gigabit ethernet switch

UNIX
pc

ixia sends/recvs packets

port-mirror of IXIA send port

 39

test notes

! keep in mind that ourmon snap length is 68
bytes (includes L4 headers, not data)
" The kernel BPF is not capturing all of a max-sized

packet
! An IDS like snort must do this

" it must run an arbitrary set of signatures over an
individual packet

" reconstruct flows
" undo fragmentation

 40

maximum packets results

! with work including 32 bpf expressions, top N,
and hardwired filters:

! we can always capture all the packets
! but we need a N megabyte BPF buffer in the

kernel
" add bpfs, add kernel buffer size

! this was about the level of real work we were
doing at the time in the real world

 41

minimum packet results

! using only the basic count/drop filter
" NO OTHER WORK!

! using any-size of kernel buffer (didn’t matter)
! we start dropping packets at around 80 mbit

speed (10% of the line rate with overhead)
! this is only with the drop/count filter!
! if you want to do real work, 30-50 mbits

more like it
! can’t deal with healthy system that has

100mbit NIC card ...

 42

why is min performance so poor?

! Two points-of-view that are complimentary.
! 1. there is not enough time to do any real work (you

have 500 ns or so)
! 2. the bottom-half of the os is at HW priority, interrupts

prevent the top-half from running (enough) to avoid
drops.

! note that growing the kernel buffer doesn’t help

! research question: what is to be done?
! btw: this is why switch/router vendors usually publish

performance stats on min-sized pkts.

 43

also top N has a problem

! random inserts means bucket lookup always
fails
" followed by a malloc

! random IP src and/or random IP dst
" how to deal with this?
" one obvious answer: make sure hash algorithm is

optimized as much as possible
! improved lookup certainly does help

" insert is logically: lookup to find correct bucket +
insert (node allocation/setup/chaining)

" our hash bucket size was way too small ...

 44

this explains my long standing
question of

! why does ourmon sometimes drop packets?
" in the drop/count graph

! but you couldn’t find any reason for it
! reason: looking at BIG things like flows,
! not small things like TCP syn attacks

" which do not add up to anything in the way of a
mByte flow

" and may be distributed

! small packets are evil...

 45

ourmon gigabit test conclusions

! min packets are a problem
" no filters and still overflows
" topn needed optimization (now bpf needs optimization)
" does topn problem apply to route caching in routers?

! a different parallel architecture is needed.for min pkts
! consequences for IDS snort system are terrible

" easy to construct a DOS attack that can sneak packets by snort
?

" 80 mbytes of 64-byte packets will likely clog it.
" to say nothing of a concerted zombie attack
" less could always do the trick depending on the exact

circumstances and the amount of work done in the monitor

 46

control/anomaly conclusions

! control theory approach to net anomaly
detection is very useful
" TCP syn/fin/reset, icmp errors to a lesser extent
" UDP icmp errors

! carefully chosen metadata is useful too
" topn inserts shows distributed attacks

! re control theory ... we need a good baseline
" shouldn’t PSU syns == PSU fins?

! baselines take time
" how do you get a baseline if you are always under

attack?

 47

meta-graph: “worm” count

 48

future work:

! re min pkts - create a parallel ourmon
architecture possibly using Intel IXP 24XX

! BPF optimization
! auto-capture packets with packet-capture probe

" front-end driven and/or back-end driven
! signal analysis
! make a release ...

" BSD port too
! http://ourmon.cat.pdx.edu/ourmon

" next release is ourmon 2.3

	Ourmon and Network Anomaly Detection
	Outline
	ourmon introduction
	PSU network
	ourmon architectural overview
	ourmon current deployment in PSU DMZ
	ourmon architectural breakdown
	the front-end probe
	the front-end probe
	ourmon.conf filter types
	mon.lite output file roughly like this:
	back-end does graphics
	hardwired-filter #1: bpf counts/drops
	2. bpf filter output example
	3. topN example (histogram)
	ourmon has taught us a few hard facts about the PSU net
	current PSU dmz ourmon probe
	ourmon and intrusion detection
	inspired by noticing this ...
	actions taken as a result:
	daily topn reports are useful
	6:00 am TCP attack - BPF net errors
	topn RRD flow count graph
	bpf TCP control
	6 am TCP top syn (this filter is useful...)
	topn syn syslog sort
	1st graph you see in the morning:
	BPF: in or out?
	BPF ICMP unreachables
	hmm... size is 100.500 bytes
	flow picture: UDP and ICMP mixed
	bpf subnet graph:
	top ICMP shows the culprit’s IP
	and the answer is
	summary for this section
	Gigabit Ethernet speed testing
	Gigabit Ethernet - Baseline
	test setup for ourmon/bpf measurement
	test notes
	maximum packets results
	minimum packet results
	why is min performance so poor?
	also top N has a problem
	this explains my long standing question of
	ourmon gigabit test conclusions
	control/anomaly conclusions
	meta-graph: “worm” count
	future work:

