Kerberos Introduction

Jm Binkley- jrb@cs.pdx.edu

outline

0 Intro to Kerberos (bark, bark)

1 protocols
— Needham Schroeder
- K4
— K5
0 miscellaneous issues
1 conclusion

Kerberos history

0 Kerberos came from MIT

0 part of project Athena, in 1980s
— which also developed the X window system

0 Kerberos4 released in 1989

— used DES, therefore export-control prevented export of
USrelease

— Australian programmer took un-DES ed form and
produced his own DES, called system ebones

0 K4 can be considered dead, but maybe not ...

K-1story, cont

0 why Kerberos, the name?

— because Cerberus was a vicious beast that
guarded the gates of hell

— 3 dog heads, and a dragon tail

— one had to “authenticate’ to pass into hell
» OF escape ...

— It should be noted however that the hero
Hercules kidnapped Cerberus ...

Isthisan early DOS attack?

K-1story, cont

0 Kerberos 5 intended to fix bugs, make
Improvements
— likely what is used today

— RFC 1510 plus supplements document it
» K4 only documented in code

— protocol donein ASN.1
— extensible encryption types
— pre-authentication feature

K-1story, cont.

0 MIT reference implementation for K-5
0 Heimdal - open source version

10 Windows 2000 and above from MS
— public key extensions

0 Apple aso usesit
0 |ETF has been attempting to formalize it

more Info

0 ORA - Kerberos book. Jason Garman
— August 2003
— practical setup/debugging info

10 Network Security, KRS
— 2 chapters

0 MIT Dialogue in Four Scenes.
web.mit.edu/Ker ber os/www/dialogue.ntm

more Info 2:

0 MIT home page:
web.mit.edu/K erberos/www

0 Heimdal home page:
www.pdc.kth.se/heimdal

0 paper: Neuman/Ts 0. Kerberos: An Authentication
Service for Computer Networks, |EEE
Communications, Sept. 1994

0 paper: Bellovin/Merritt. Limitations of the
Kerberos Authentication System, USENI X, 1991.

9

Basic concepts

0 Kerberos basically authenticates clients to servers

0 passwords never sent in the clear
— we send “tickets’ instead

0 aticket Is an encrypted session-key with atimeout

0 a“directory” may be used in an implementation to
hold keys

— e.0., MS has an LDAP directory structure

10

terminology

0 principal - akerberos user
— may be service
— may be person
0 aprincipal i1saname
— K4 form:
— user|.instance] @REALM
— service.hosthame@REALM

11

names, comnt.

0 because K4 did not allow two hosts with the
same name In the same realm

0 K5 principal like so:
— usernamef/instance] @REALM
— servicel FODN@REALM

0 eqg.,,
— host/foo.com@REALM
— host/bar.com@REALM

12

a REALM

0 areamisthedomain of aKDC
— typically an enterprise or one admin domain

0 realm name usually same as DNS
— BUT UPPERCASE
— Joebob/admin@MY FOO.BAR.COM

0 name doesn’t have to be DNS though

13

Kerberos services

0 passwords are not transmitted in the clear
— and in fact, session-keys are sent

1 single-sign-on
— user logs in once, and can talk to multiple

services without having to reverify with a
password (possibly a different password)

0 mutual authentication
— alice/lbob both authenticate to each other

14

the man behind the curtain

0 we must have a KDC
— better a*distributed* KDC
— KDC had better be a very secure host
— not on Inet ... minimal services, €tc.
— super Bastion Host ...

0 we must I1ssue passwords and both Alice
and the KDC must know them

15

KDC has 3 parts

0 database of principals and keys
— MSuses LDAP
— Heimdal putsin specialized db
0 ticket-granting-server - takes care of ticket-
granting for Alice/Bob (user/server) exchange
0 authentication-server - implements single sign-on
function

— Issues TGT (ticket granting ticket) that Alice' s software
can use to get individual ticketsto talk to other servers

16

cont.

1 ticket granting service has 2 inputs:
— 1. the ticket granting ticket (TGT)
— 2. principal name for desired service (bob)

0 TGS verifiesthat TGT isvalid
— by decode with KDC symmetric key

17

aticket is;

0 user’s principal - who wants the service

1 service' s principal - who does the service

0 when started, and when becomes invalid

0 list of |P addresses involved

1 the shared secret key encrypted with a
principal’s key

0 ticket’ s usually last hours or a day

18

Fundamental protocol

0 Needham Schroeder protocol, Xerox, 1978

0 Assume Alice, Bob, and KDC
— key distribution center

0 note: Bob may be aservice
— aprinter, file system, telnet server, etc.

0 Alice, Bob, and KDC all have symmetric secret
keys

— or passwords that can be turned into symmetric keys
0 KDC has keys stored on it

19

algorithm underpinnings

0 1. a-priori shared secret between KDC and
Alice/KDC and Bob

— 2 master keys

0 2. Alice gets from KDC two session keys
— 1. one encrypted for Alice with Alice’ s master
— 2. one encrypted for Bob with Bob’s master
— 3. thisisanew Alice/Bob session key

0 3. Alice send’' s Bob Bob's key, and Bob

decrypts with Bob’s master key 20

N/S cont.

0 M1toKDC: A wantstotalk to B, N1

— A can encrypt with her key
— Nonce isincluded here to make sure KDC reply isfresh

0 M2, KDCto A: Kalice{ N1, Bob id, Kab, Bob
ticket}

— Kab isasession key, Bob ticket is the session key
encrypted with Bob' s secret key

— al encrypted with Alice’ s secret key

— Alice can’'t make anything with Bob’ s ticket as she
doesn’t have Bob' s key

21

N/S cont.

0 m3: Aliceto Bob: ticket, challenge to Bob
— challenge, has N2 encrypted with Kab.
— Bob opens the ticket to get Kab, and can decode N2
— ticket has Alice’'sname it in for mutual authentication

0 m4. Bob to Alice: Kab{ N2-1, N3}
0 mb5: Aliceto Bob: Kab{ N3-1}

0 last two steps done for mutual authentication, and
proof that they both know the secret key.

— manipulate the nonce by subtracting one.

22

KDC picture

1. aliceloginsto KDC

Useralice'\

4 2. kdc
' ds
ACK SN0 y
or session-keys
NAK 3. dlice sends

| session-keys to server bob

server bob

23

anumber of holes exist

1 passwords are imperfect ...
— Alice may have a bad password
— or may lose it
— Or may give it away

— or the protocol itself as implemented might be
subject to brute-force password cracking

—e.g., what If aticket isssmply stored in afile
and an attacker getsthe file?

24

one Improvement

0 Alice 1st talksto Bob

0 Bob sends Alice Kbob{ Nonce of Bob}
0 Alice sends this nonce to the KDC

0 which putsit in Bob' s ticket

1 this prevents Bad Bertha from using Alice’s
old key, once Alice has changed her key

0 Bob knows that the key Alice used with the
KDC is post its own nonce being sent.
25

Kerberos 4 basic protocol

1 two mgor changes

0 1. we assume shared time, which getsrid of
the challenge-response protocol
—e.g.,weuseNTP
0 2. In order to implement single-sign-on, we
Implement aticket-granting server
— authentication service (Alice to Bob)
— ticket granting service (Aliceto KDC)

26

K4 protocol

0 part 1. authentication server
— password from user turned into
— ticket granting ticket
0 part 2: ticket-granting server
— TGT and principal info turned into
— session key for Alice/Baob

27

authentication server function

0 client sends AS REQ: (client principal,
client timestamp, krbtgt (ticket granting
server principal name), requested lifetime)

— sent in plaintext

orobably at start of day
probably last 8-10 hours

Krbtgt.hosthame@REALM i1s TGS principal

0 server must verify that timeiswithin a
certain limit, say 5 minutes

28

AS generates session key

1 session key shared between Alice and

— one copy for client
—onefor TGS

0 sends AS REP message to client:
(user copy of session key, krbtgt
principal, ticket lifetime, TGS ticket)

GS

— all of this message encrypted with client secret

key

— TGS ticket encrypted with TGS secret key

29

ASreply continued.

0 TGS “key box” (ticket) contains:
— TGS copy of session key
— client principal
— ticket lifetime
— KDC timestamp
— client ip address

0 thisis cached at client

0 client gets user password to decode ...

0 thus we get single-sign-on

30

so client now has

0 1. asession key

0 2. aticket-granting ticket
—which it cachesin afile or in memory
— memory is probably a better idea, why?

31

part 2: ticket-granting server

0 client sends TGS request: (service principal
name, TG ticket, authenticator,
timestamp)to Ticket Granting Server

0 authenticator (encrypted with TGS session-
key) : (timestamp, client principal)
— client has knowledge of shared key
— proves unigqueness of request

0 KDC formulates reply

32

part 2: TGS reply

0 TGSreply (encrypted with TGS session
key): (user copy of new session key, service
principal name, ticket lifetime, service
ticket)

0 service ticket (encrypted with service key):
(service copy of new session key, client
principal, ticket lifetime, KDC timestamp,
client ip address)

33

client sends ticket to server

0 thisis not part of the K protocol
— or thisis app dependent
— K system provides library code to help
0 we might mount awindows file-share
— or talk to atelnet daemon at this point

34

K4: some details;

0 K4 reguires us to take password string
— e.g., create a56-bit DES key
— call this string2key()
— similar to UNIX password function
0 encryption ispossible if app wants
— provided in library
— kerberos provides this format:
(version, message type, length, cybercrud)
0 In K4, thisis DES in PCBC mode using session
key
35

K4: some details

0 Integrity checking is possible
0 KRS states that algorithm wasan MIT
variation on Jueneman MAC
— kerberos calls MAC'’ s * checksums’
— not good practice, why?
— K5 uses more commonly accepted algorithms

36

K5 overview

1 ASN.1 (ouch, ouch, ouch, ouch)
— means we can heglect protocol details
— except when they bite us ...

0 neglecting that all the protocol bits have
changed, it can be viewed as similar

0 but more extensible

— K4 assumed DES! ... need more variation than
that

37

K5 overview

1 credential forwarding is one feature
— user getsto serverA with telnet
— now wants to ftp to serverB ...
— with K4 can’t do that

— In K5, ticket-granting-ticket is sent to remove
server upon login

38

ASN.1

[]
[]
L]

1 O O 0O

allows variable length forwarding in a
TAG, LENGTH, VALUE format

can view both as protocol and data definition
language

has basic types
and constructed types made from basic types
used in SNMP, certificate formats, LDAP, H323

KRS points out | P address takes 15 bytesto
encode!

39

K5 overview continued:

0 K4 assumed DES

0 K5 allows other choices, including entirely
new choices (In case the previous one
springs a leak)

— as any good crypto protocol should

— keys are tagged with type and length

— rsa-md5-des is required (desis not a good idea)
» rsaemd5 means md5 from RSA!

— check your latest documentation ...
40

In K5, one more major protocol
change

1 double encryption in K4 eliminated

—e.g., TGSreply has service ticket encrypted by
service key, encrypted with user key

— In K5, basically concatenated together one after
the other

0 K5 uses string to key transformation but
adds salt:

— salt Is complete principal name

41

K5, new ticket option

0 forwardable ticket
— user can ask for ticket to be sent to another host |ater

0 renewable tickets
— tickets have 2-tier lifetime scheme
— standard lifetime and renewable lifetime

— must be resubmitted to KDC in order for renewable in
case of troubler

0 postdated ticket
— ticket that can be used later, useful for batch jobs

42

K5 - preauthentication

0 K4 could have dictionary and brute-force attacks

made against it
— KDC givesticket granting ticket for any principal in
database to any client
— offline attack can thus be made against any principal

0 K5 makes more difficult with preauthentication
feature

— client must prove identity before getting ticket

0 e.g., done by proving knowledge of shared key
between client and KDC

43

misc I1ssues. windows - practical
use

0 you can end up with single sign-on to “Active
Directory”

0 thiswill give you file shares

0 printing

0 some limited support for email depending on
email clients?

0 remember this 1s an authentication-oriented
service

0 uses HMAC-MD5 and RC4 for encryption as
default, DES added later

UNIX implementation

0 telnet/ftp may use it
— telnet -x can even do encryption

0 rsh/rlogin/rcp have used it
— Ironically made better as a consequence

0 popper iIn Heimdal (pop server)
0 don’t assume encryption unless you know
better

— Implementation dependent
45

cross-realm trust

1 2 or more domains shares the same
encryption keys

0 2 principals created in each realm
— trust may be 1-way, A trusts B, but not B trusts

A

] cross-realm trust IS N** 2

— may use sharec
0 of course more

realm to get around this

orincipals we have ... the

less trust results

46

security and other considerations

0 all apps should useit - few do
— 1If one does not, the user password is exposed
— 1t could be sniffed if mail app does not use it

0 dependent on goodness/safeness of said user
password

— one hopes Alice’ s password is not Alice, password, or
bob ...

0 KDC may be asingle point of fallure

0 security of KDC itself is VERY important

— root compromise would be bad
47

security and other considerations

0 Kerberosis single-user/per host system
— keys may be stored in /tmp directory

0 root compromise of client machine gives access to
those keys

0 arewe still using DES with K57
— objectionable especially if encryption is actually used
0 K4 may suffer from offline dictionary attacks

43

ports used by Kerberos

0 K5 ticket service on 88 udp/tcp

0 K5 kpassword service for client password changes
— 749/TCP

0 K5 to K4 ticket conversion, 4444/UDP
0 K5 admin service (UNIX), 749/TCP

0 Master/Admin KDC, 464/UDP (older password-
changing protocol)

0 K4 uses 750/751/761

49

study guestions

0 what pros/cons exist for putting the KDC on
a windows box?

0 what 1ssues exist re user passwords and
Kerberos?

0 what 1ssues exist re applications and
Kerberos in terms of
authentication/encryption?

50

	Kerberos Introduction
	outline
	Kerberos history
	k-istory, cont
	k-istory, cont
	k-istory, cont.
	more info
	more info 2:
	Basic concepts
	terminology
	names, cont.
	a REALM
	Kerberos services
	the man behind the curtain
	KDC has 3 parts
	cont.
	a ticket is:
	Fundamental protocol
	algorithm underpinnings
	N/S cont.
	N/S cont.
	KDC picture
	a number of holes exist
	one improvement
	Kerberos 4 basic protocol
	K4 protocol
	authentication server function
	AS generates session key
	AS reply continued.
	so client now has
	part 2: ticket-granting server
	part 2: TGS reply
	client sends ticket to server
	K4: some details:
	K4: some details
	K5 overview
	K5 overview
	ASN.1
	K5 overview continued:
	in K5, one more major protocol change
	K5, new ticket option
	K5 - preauthentication
	misc issues: windows - practical use
	UNIX implementation
	cross-realm trust
	security and other considerations
	security and other considerations
	ports used by Kerberos
	study questions

