
1

Kerberos Introduction

Jim Binkley- jrb@cs.pdx.edu

2

outline
◆ intro to Kerberos (bark, bark)
◆ protocols

– Needham Schroeder
– K4
– K5

◆ miscellaneous issues
◆ conclusion

3

Kerberos history
◆ Kerberos came from MIT
◆ part of project Athena, in 1980s

– which also developed the X window system

◆ Kerberos 4 released in 1989
– used DES, therefore export-control prevented export of

US release
– Australian programmer took un-DES’ed form and

produced his own DES, called system ebones

◆ K4 can be considered dead, but maybe not ...

4

k-istory, cont
◆ why Kerberos, the name?

– because Cerberus was a vicious beast that
guarded the gates of hell

– 3 dog heads, and a dragon tail
– one had to “authenticate” to pass into hell

» or escape ...

– it should be noted however that the hero
Hercules kidnapped Cerberus ...

5

is this an early DOS attack?

6

k-istory, cont
◆ Kerberos 5 intended to fix bugs, make

improvements
– likely what is used today
– RFC 1510 plus supplements document it

» K4 only documented in code

– protocol done in ASN.1
– extensible encryption types
– pre-authentication feature

7

k-istory, cont.
◆ MIT reference implementation for K-5
◆ Heimdal - open source version
◆ Windows 2000 and above from MS

– public key extensions
◆ Apple also uses it
◆ IETF has been attempting to formalize it

8

more info
◆ ORA - Kerberos book. Jason Garman

– August 2003
– practical setup/debugging info

◆ Network Security, KRS
– 2 chapters

◆ MIT Dialogue in Four Scenes:
web.mit.edu/Kerberos/www/dialogue.html

9

more info 2:
◆ MIT home page:

web.mit.edu/Kerberos/www
◆ Heimdal home page:

www.pdc.kth.se/heimdal
◆ paper: Neuman/Ts’o. Kerberos: An Authentication

Service for Computer Networks, IEEE
Communications, Sept. 1994

◆ paper: Bellovin/Merritt. Limitations of the
Kerberos Authentication System, USENIX, 1991.

10

Basic concepts
◆ Kerberos basically authenticates clients to servers
◆ passwords never sent in the clear

– we send “tickets” instead

◆ a ticket is an encrypted session-key with a timeout
◆ a “directory” may be used in an implementation to

hold keys
– e.g., MS has an LDAP directory structure

11

terminology
◆ principal - a kerberos user

– may be service
– may be person

◆ a principal is a name
– K4 form:
– user[.instance]@REALM
– service.hostname@REALM

12

names, cont.
◆ because K4 did not allow two hosts with the

same name in the same realm
◆ K5 principal like so:

– username[/instance]@REALM
– service/FQDN@REALM

◆ e.g.,,
– host/foo.com@REALM
– host/bar.com@REALM

13

a REALM
◆ a realm is the domain of a KDC

– typically an enterprise or one admin domain
◆ realm name usually same as DNS

– BUT UPPERCASE
– joebob/admin@MYFOO.BAR.COM

◆ name doesn’t have to be DNS though

14

Kerberos services
◆ passwords are not transmitted in the clear

– and in fact, session-keys are sent
◆ single-sign-on

– user logs in once, and can talk to multiple
services without having to reverify with a
password (possibly a different password)

◆ mutual authentication
– alice/bob both authenticate to each other

15

the man behind the curtain
◆ we must have a KDC

– better a *distributed* KDC
– KDC had better be a very secure host
– not on Inet ... minimal services, etc.
– super Bastion Host ...

◆ we must issue passwords and both Alice
and the KDC must know them

16

KDC has 3 parts
◆ database of principals and keys

– MS uses LDAP
– Heimdal puts in specialized db

◆ ticket-granting-server - takes care of ticket-
granting for Alice/Bob (user/server) exchange

◆ authentication-server - implements single sign-on
function
– issues TGT (ticket granting ticket) that Alice’s software

can use to get individual tickets to talk to other servers

17

cont.
◆ ticket granting service has 2 inputs:

– 1. the ticket granting ticket (TGT)
– 2. principal name for desired service (bob)

◆ TGS verifies that TGT is valid
– by decode with KDC symmetric key

18

a ticket is:
◆ user’s principal - who wants the service
◆ service’s principal - who does the service
◆ when started, and when becomes invalid
◆ list of IP addresses involved
◆ the shared secret key encrypted with a

principal’s key
◆ ticket’s usually last hours or a day

19

Fundamental protocol
◆ Needham Schroeder protocol, Xerox, 1978
◆ Assume Alice, Bob, and KDC

– key distribution center

◆ note: Bob may be a service
– a printer, file system, telnet server, etc.

◆ Alice, Bob, and KDC all have symmetric secret
keys
– or passwords that can be turned into symmetric keys

◆ KDC has keys stored on it

20

algorithm underpinnings
◆ 1. a-priori shared secret between KDC and

Alice/KDC and Bob
– 2 master keys

◆ 2. Alice gets from KDC two session keys
– 1. one encrypted for Alice with Alice’s master
– 2. one encrypted for Bob with Bob’s master
– 3. this is a new Alice/Bob session key

◆ 3. Alice send’s Bob Bob’s key, and Bob
decrypts with Bob’s master key

21

N/S cont.
◆ M1 to KDC : A wants to talk to B, N1

– A can encrypt with her key
– Nonce is included here to make sure KDC reply is fresh

◆ M2, KDC to A: Kalice{N1, Bob id, Kab, Bob
ticket}
– Kab is a session key, Bob ticket is the session key

encrypted with Bob’s secret key
– all encrypted with Alice’s secret key
– Alice can’t make anything with Bob’s ticket as she

doesn’t have Bob’s key

22

N/S cont.
◆ m3: Alice to Bob: ticket, challenge to Bob

– challenge, has N2 encrypted with Kab.
– Bob opens the ticket to get Kab, and can decode N2
– ticket has Alice’s name it in for mutual authentication

◆ m4: Bob to Alice: Kab{N2-1, N3}
◆ m5: Alice to Bob: Kab{N3-1}
◆ last two steps done for mutual authentication, and

proof that they both know the secret key.
– manipulate the nonce by subtracting one.

23

KDC picture

user alice

KDC

server bob

1. alice logins to KDC

2. kdc
sends
session-keys

3. alice sends
session-keys to server bob

4.
ACK
or
NAK

24

a number of holes exist
◆ passwords are imperfect ...

– Alice may have a bad password
– or may lose it
– or may give it away
– or the protocol itself as implemented might be

subject to brute-force password cracking
– e.g., what if a ticket is simply stored in a file

and an attacker gets the file?

25

one improvement
◆ Alice 1st talks to Bob
◆ Bob sends Alice Kbob{Nonce of Bob}
◆ Alice sends this nonce to the KDC
◆ which puts it in Bob’s ticket
◆ this prevents Bad Bertha from using Alice’s

old key, once Alice has changed her key
◆ Bob knows that the key Alice used with the

KDC is post its own nonce being sent.

26

Kerberos 4 basic protocol
◆ two major changes
◆ 1. we assume shared time, which gets rid of

the challenge-response protocol
– e.g., we use NTP

◆ 2. in order to implement single-sign-on, we
implement a ticket-granting server
– authentication service (Alice to Bob)
– ticket granting service (Alice to KDC)

27

K4 protocol
◆ part 1: authentication server

– password from user turned into
– ticket granting ticket

◆ part 2: ticket-granting server
– TGT and principal info turned into
– session key for Alice/Bob

28

authentication server function
◆ client sends AS_REQ: (client principal,

client timestamp, krbtgt (ticket granting
server principal name), requested lifetime)
– sent in plaintext
– probably at start of day
– probably last 8-10 hours
– krbtgt.hostname@REALM is TGS principal

◆ server must verify that time is within a
certain limit, say 5 minutes

29

AS generates session key
◆ session key shared between Alice and TGS

– one copy for client
– one for TGS

◆ sends AS_REP message to client:
(user copy of session key, krbtgt

principal, ticket lifetime, TGS ticket)
– all of this message encrypted with client secret

key
– TGS ticket encrypted with TGS secret key

30

AS reply continued.
◆ TGS “key box” (ticket) contains:

– TGS copy of session key
– client principal
– ticket lifetime
– KDC timestamp
– client ip address

◆ this is cached at client
◆ client gets user password to decode ...
◆ thus we get single-sign-on

31

so client now has
◆ 1. a session key
◆ 2. a ticket-granting ticket

– which it caches in a file or in memory
– memory is probably a better idea, why?

32

part 2: ticket-granting server
◆ client sends TGS request: (service principal

name, TG ticket, authenticator,
timestamp)to Ticket Granting Server

◆ authenticator (encrypted with TGS session-
key) : (timestamp, client principal)
– client has knowledge of shared key
– proves uniqueness of request

◆ KDC formulates reply

33

part 2: TGS reply
◆ TGS reply (encrypted with TGS session

key): (user copy of new session key, service
principal name, ticket lifetime, service
ticket)

◆ service ticket (encrypted with service key):
(service copy of new session key, client
principal, ticket lifetime, KDC timestamp,
client ip address)

34

client sends ticket to server
◆ this is not part of the K protocol

– or this is app dependent
– K system provides library code to help

◆ we might mount a windows file-share
– or talk to a telnet daemon at this point

35

K4: some details:
◆ K4 requires us to take password string

– e.g., create a 56-bit DES key
– call this string2key()
– similar to UNIX password function

◆ encryption is possible if app wants
– provided in library
– kerberos provides this format:

(version, message type, length, cybercrud)

◆ in K4, this is DES in PCBC mode using session
key

36

K4: some details
◆ integrity checking is possible
◆ KRS states that algorithm was an MIT

variation on Jueneman MAC
– kerberos calls MAC’s “checksums”
– not good practice, why?
– K5 uses more commonly accepted algorithms

37

K5 overview
◆ ASN.1 (ouch, ouch, ouch, ouch)

– means we can neglect protocol details
– except when they bite us ...

◆ neglecting that all the protocol bits have
changed, it can be viewed as similar

◆ but more extensible
– K4 assumed DES! ... need more variation than

that

38

K5 overview
◆ credential forwarding is one feature

– user gets to serverA with telnet
– now wants to ftp to serverB ...
– with K4 can’t do that
– in K5, ticket-granting-ticket is sent to remove

server upon login

39

ASN.1
◆ allows variable length forwarding in a
◆ TAG, LENGTH, VALUE format
◆ can view both as protocol and data definition

language
◆ has basic types
◆ and constructed types made from basic types
◆ used in SNMP, certificate formats, LDAP, H323
◆ KRS points out IP address takes 15 bytes to

encode!

40

K5 overview continued:
◆ K4 assumed DES
◆ K5 allows other choices, including entirely

new choices (in case the previous one
springs a leak)
– as any good crypto protocol should
– keys are tagged with type and length
– rsa-md5-des is required (des is not a good idea)

» rsa-md5 means md5 from RSA!

– check your latest documentation ...

41

in K5, one more major protocol
change

◆ double encryption in K4 eliminated
– e.g., TGS reply has service ticket encrypted by

service key, encrypted with user key
– in K5, basically concatenated together one after

the other
◆ K5 uses string to key transformation but

adds salt:
– salt is complete principal name

42

K5, new ticket option
◆ forwardable ticket

– user can ask for ticket to be sent to another host later

◆ renewable tickets
– tickets have 2-tier lifetime scheme
– standard lifetime and renewable lifetime
– must be resubmitted to KDC in order for renewable in

case of troubler

◆ postdated ticket
– ticket that can be used later, useful for batch jobs

43

K5 - preauthentication
◆ K4 could have dictionary and brute-force attacks

made against it
– KDC gives ticket granting ticket for any principal in

database to any client
– offline attack can thus be made against any principal

◆ K5 makes more difficult with preauthentication
feature
– client must prove identity before getting ticket

◆ e.g., done by proving knowledge of shared key
between client and KDC

44

misc issues: windows - practical
use

◆ you can end up with single sign-on to “Active
Directory”

◆ this will give you file shares
◆ printing
◆ some limited support for email depending on

email clients?
◆ remember this is an authentication-oriented

service
◆ uses HMAC-MD5 and RC4 for encryption as

default, DES added later

45

UNIX implementation
◆ telnet/ftp may use it

– telnet -x can even do encryption
◆ rsh/rlogin/rcp have used it

– ironically made better as a consequence
◆ popper in Heimdal (pop server)
◆ don’t assume encryption unless you know

better
– implementation dependent

46

cross-realm trust
◆ 2 or more domains shares the same

encryption keys
◆ 2 principals created in each realm

– trust may be 1-way, A trusts B, but not B trusts
A

◆ cross-realm trust is N**2
– may use shared realm to get around this

◆ of course more principals we have ... the
less trust results

47

security and other considerations
◆ all apps should use it - few do

– if one does not, the user password is exposed
– it could be sniffed if mail app does not use it

◆ dependent on goodness/safeness of said user
password
– one hopes Alice’s password is not Alice, password, or

bob ...

◆ KDC may be a single point of failure
◆ security of KDC itself is VERY important

– root compromise would be bad

48

security and other considerations
◆ Kerberos is single-user/per host system

– keys may be stored in /tmp directory

◆ root compromise of client machine gives access to
those keys

◆ are we still using DES with K5?
– objectionable especially if encryption is actually used

◆ K4 may suffer from offline dictionary attacks

49

ports used by Kerberos
◆ K5 ticket service on 88 udp/tcp
◆ K5 kpassword service for client password changes

– 749/TCP

◆ K5 to K4 ticket conversion, 4444/UDP
◆ K5 admin service (UNIX), 749/TCP
◆ Master/Admin KDC, 464/UDP (older password-

changing protocol)
◆ K4 uses 750/751/761

50

study questions
◆ what pros/cons exist for putting the KDC on

a windows box?
◆ what issues exist re user passwords and

Kerberos?
◆ what issues exist re applications and

Kerberos in terms of
authentication/encryption?

	Kerberos Introduction
	outline
	Kerberos history
	k-istory, cont
	k-istory, cont
	k-istory, cont.
	more info
	more info 2:
	Basic concepts
	terminology
	names, cont.
	a REALM
	Kerberos services
	the man behind the curtain
	KDC has 3 parts
	cont.
	a ticket is:
	Fundamental protocol
	algorithm underpinnings
	N/S cont.
	N/S cont.
	KDC picture
	a number of holes exist
	one improvement
	Kerberos 4 basic protocol
	K4 protocol
	authentication server function
	AS generates session key
	AS reply continued.
	so client now has
	part 2: ticket-granting server
	part 2: TGS reply
	client sends ticket to server
	K4: some details:
	K4: some details
	K5 overview
	K5 overview
	ASN.1
	K5 overview continued:
	in K5, one more major protocol change
	K5, new ticket option
	K5 - preauthentication
	misc issues: windows - practical use
	UNIX implementation
	cross-realm trust
	security and other considerations
	security and other considerations
	ports used by Kerberos
	study questions

