
1

An Intro to Network Crypto

Jim Binkley- jrb@cs.pdx.edu

2

Crypto outline
 overview
 symmetric crypto (DES ... encryption)
 hash/MAC/message digest algorithms
 asymmetric crypto (public key technology)
 DH - how to start a secure connection
 KDC - a little bit on shared secret servers
 signatures - authentication with asymmetric keys
 certificates - signed public keys
 a little bit on authentication

3

overview

 there are MANY crypto algorithms and
MANY academic network secure protocols

 how they are used in network protocols is
another matter

 traditional IETF RFC said under security
considerations (at end of doc)
– “not considered here” (another F. Flub)

 new IETF POV: must consider here

4

symmetric encryption
 both sides know OUT OF BAND shared secret

(password, bit string)
 encrypt(key, plaintext) -> cybercrud(encrypted)
 decrypt(key, cybercrud) -> plaintext
 encode/decode use same key (symmetric)

– shared secret on both sides
 algorithms include: DES, 3DES, IDEA(128),

BLOWFISH, SKIPJACK, new AES
 ssh uses 128 bit keyed IDEA
 DES key 56 bits - 0xdeadbeefdeadbeef

5

DES-CBC

 Cipher Block Chaining Mode
 DES processes one 64 bit block of data at a

time (key is 64 bits (8 bits not important))
 CBC is used so that e.g., two 64 bit blocks

in a row that are the same, do NOT produce
two 64 encrypted blocks that are the same

 C(n) = Ek [C(n-1) xor Plaintext(n)]
 requires known IV or initialization vector

6

pros/cons
 pros

– faster than asymmetric
 cons

– shared secrets do not scale in general to many users
» more people know secret, less of a secret

– secrets hard to distribute
– export laws have blocked encryption software
– DES key length too short?! (RSA challenge)

» 2-3 bits a year used up by Moore’s law

7

mention briefcase man Jim
 how do get the shared secret from spot A to B
 no we do not publish it on the web
 “out of band”
 this is a GENERAL problem in secret distribution

– is is N**2 for symmetric keys, but can be made linear
with a server Or with public-key crypto and a server

 in general the need for briefcase man is always
there else you are susceptible to a MITM attack

8

challenge-response with DES

 assume client/server & shared secret
client: server:
------------ send ID (bob) -->
 <---- send random challenge X
compute E = f(X, DES key)
 ------ send E to server -->
 decode(E, key)
 == X

 authentication mechanism (shared secret)

9

cryptanalysis means what?

 decoding the cybercrud or finding
weaknesses in algorithms

 hardest if you don’t know any plaintext
 easier if you know some: known plaintext

attack
 easiest if you can suggest the plaintext:

proposed plaintext attack
 point: end-end crypto is more secure, why?

10

why so?

host A hostrouter

crypto no crypto

Bart the evil one can inject
data to host A and see how it
is encrypted. ...

e.g., we have crypto (like IPSEC) between a host
and a border router, but not to the server.

11

media digest algorithms aka

 hash functions OR
 one-way functions OR
 message authentication codes (if used with a

shared-secret key)
 e.g., MD5, SHA, HMAC-MD5, HMAC-

SHA
 MD5 - RFC 1321 (Ron Rivest)
 Secure Hash Alg. - NIST, FIPS PUB 180-1

12

media digest functions
 take a message, and produce a non-reproducible

bit string (hash or media digest for a file)
– MD(msg) -> bit string (128 bits with MD5)

 MD(msg, shared secret)-> authenticator
 may be used for password mechanisms

– longer strings better, FreeBSD 128 byte passwd length
 used with signatures for efficiency reasons

– MD algorithm faster than public-key
– we hash the msg, then sign it

13

examples of MD functions
 download X and MD

– compare X to MD to make sure you didn’t have bit rot
– does this prevent a hacker from changing X?

 virus game1.exe upload to cwsandbox
– get media digest - may determine they have seen it

before
 nasty porno file has MD

– police agencies have database of MDs
 used in ID system like tripwire

– file X hasn’t changed recently

14

when we talk about signatures?

 we are vague …
 1. pattern matching algorithm used to id

virus bits in a file or bits on network
– what are counter-measures on the black side?

 2. MD signature used to type files
 3. digital signature - public key crypto used

to sign document (actually sign MD)

15

one time pad with MD algorithm
 a one-time pad is in theory:

– an inexhaustible set of random bits of which there are 2
copies

– briefcase man has gotten it from Alice to Bob
– we take the msg of N bits and take the next N bits from

our inexhaustible store and xor them together to encrypt
– xor again to decrypt

 or we might use it just for secret key generation
– every time we need a key, we take a phrase from a

shared book and hash it with MD5 to make some bits

16

how about like this?

 Alice and Bob have a shared secret K(ab)
 Alice computes MD(Kab)
 she xors the message with the hash,
 for the next message block she does
 MD(MD(Kab))
 Alice needs an IV too, but never mind
 we also need a message integrity check

17

examples

 MD5 - media digest 5, 128 bit string (key)
– used with RSA signatures

 SHA - 160 bits,
– used with DSS public key crypto scheme

 MD5 has “flaws” - we may need better MD
algorithms or different ideas

 whirlpool - new hash (512 bit digest)

18

ssdeep - different take on MD
algorithm

 fuzzy hashing - Jesse Kornblum
 basic idea: hash can show that f1 and f2 are

similar (or totally different)
 ssdeep is a tool he developed
 shadowserver has used it to show

similarities in various malwares produced
by RBN

19

HMAC - MD5 (or SHA)

 felt that MD5 and its like needed to be made
more secure with attention to MAC
function, not media digest function

 also of course, no export control ...
 HMAC - hash message auth. code,

RFC2104
 roughly: f[(K xor C1)||f[K xor C2] || msg]

– essentially two rounds of mac function (f) with
cybercrud worked in as appropriate

20

an example - Mobile-IP

Mobile-IP authenticated UDP packet
Home Agent

Mobile Node

registration
request

registration reply

21

Mobile-IP

 Home Agent keeps key-list of (mobile node
IP addresses, per MN 128bit MD5 key)

 MN and HA share 128 bit MD5 shared
secret

 compute f(key, msg) and store hash in
Mobile-IP registration message

 routing not setup if authentication fails
 note authentication is per IP address as ID

22

Mobile-IP auth. header
encapsulation

IP UDP Mobile-IP 128-bit hash

authenticated part
mobile-ip message part (app layer) includes both

1. time bits (nonce)
2. MN/HA ip addresses (ids)

23

Diffie-Hellman algorithm
 guess who invented it
 public key but doesn’t do signatures/encryption
 allows two entities that share two public numbers

to arrive at a shared secret that can be used for
encryption of further messages

 basis of many “session key” algorithms
 share secure channel and periodically change key

(use DH to start, DES for bulk work)

24

DH might go like this

 Alice/Bob a priori agree on two public
numbers:
– p, a large (>=512 bits) prime
– g, where g < p

 pre-compute:
– Alice Bob comment
– S(a) = f(random) S(b) = f(random) 512 bits
– T(a) = g**S(a) mod p T(b) = g**S(b) mod p

 Alice sends T(a) to Bob; Bob sends T(b) to Alice

25

cont:
 post-compute of shared secret key material

– Alice Bob
– S(secret) = T(b) ** S(a) mod p

S(secret) = T(a) ** S(b) mod p
 S(secret) is the shared secret key usable for

encryption/authentication and is the same because
 T(b)**S(a) = T(a) ** S(b) as
 T(b) ** S(a) = (g ** S(b))** S(a) = (g **S(a)) **

S(b) = T(a) ** S(b)

26

cont:
 hard to compute S(a) given only T(a), g, p (hard to

compute discrete log)
 may periodically recompute S(secret) based on use

of key
– used for time T then recompute
– used for data amount Bytes then recompute

27

questions re DH

 is unauthenticated DH subject to any active
attacks?
– if so, how?

 how can said attacks be fixed with what you
know so far?

 why can’t Black Bart intercept Alice’s first
packet and passively compute the shared
secret?

28

paradigm for secure algorithm

 use asymmetric crypto to secure DH
messages (e.g., RSA) or even HMAC-MD5

 use DH and handshake to setup session keys
and agreement on which crypto algorithms
to use for encryption/authentication

 send bulk messages with session-key
derived encrypted or authenticated packets
– using MD5/DES, SHA/IDEA, whatever

29

secure protocol paradigm then:

1.
DH(authenticated) gives shared secrets

2.
let’s use encryption X, auth. Y
(e.g., idea/HMAC-SHA)

3.

handshake

handshake

bulk per pkt
data

encrypted/authenticated data (with security header)

data

30

Perfect Forward Secrecy

 PFS defined as:
– 1. attacker can record entire crypto session
– 2. attacker can break in and steal keys (public

or private)
– 3. attacker still can’t figure out the next session

 would Alice encrypting Bob’s email with
Bob’s public key have this feature?

31

DH with PFS
 Alice sends Bob: [Alice, g(a) mod p] Alice (sig)
 Bob sends Alice: [Bob, g(b) mod p] Bob
 Alice sends hash(g(ab) mod p)
 Bob sends hash(1, g(ab) mod p)
 Both know the hash, and because

– 1. DH gives private material based on initial random #
– 2. hash is 1-way
– we have unknowable secrets

32

key-escrow “foilage”

 is something a PFS protocol gives us
 doesn’t matter if big-brother knows all your

keys, public/private
 protocol is unbreakable

33

consider this protocol

 generate key via shared-secret and hash
– and what other properties?

 both sides do sha(shared-secret, other?)
 use that hash as key for privacy
 periodically hash the hash at a certain time

– time past or bytes sent
 does this give us PFS? if not, what can we

do to fix it?

34

KDC idea
 DH is one-way to establish shared “session keys”
 This is also about the idea of using a protocol to

establish keys on both sides
 another old idea is the idea of a symmetric key-

server
 you use a key-exchange protocol to get new keys

from it
 KDC - key distribution center

– traditional idea: exchange of symmetric keys
– for indirect authentication

35

KDC picture

user alice

KDC

server bob

1. alice logins to KDC

2. kdc
sends
session-keys

3. alice sends
session-keys to server bob

4.
ACK
or
NAK

36

algorithm underpinnings

 1. a-priori shared secret between KDC and
Alice/Bob
– 2 master keys

 2. Alice gets from KDC two session keys
– 1. one encrypted for Alice with Alice’s master
– 2. one encrypted for Bob with Bob’s master
– 3. this is a new Alice/Bob session key

 3. Alice send’s Bob Bob’s key, and Bob
decrypts with Bob’s master key

37

symmetric session-key system
 think of the new session keys as a 2-way base

secret between Bob and Alice
 this can be used for an authentication algorithm

between the two now
 this algorithm has problems (MITM and Replay)

– also single point of failure
– shared symmetric secrets outside a domain?

 a family of improvements include
– Needham-Schroder (78)

 Kerberos v4 and v5

38

asymmetric or public-key crypto

 key generation produces (public, private)
key pairs

 can give Public key away, secure private
key (somehow ... and hard ...)

 two important services:
– signature - append bit string that proves you

signed a message, uses private key
(authenticate)

– confidentiality - uses public key (encrypt)

39

algorithms include:

 RSA - company and algorithm
– invented by Rivest, Shamir, Adleman
– key lengths, e.g., 512/1024 or inbetween
– block size is smaller than key length
– output will be length of key

 DSS - US govt. competition for RSA
 Diffie - Hellman (older than RSA)

– doesn’t allow signatures/encryption

40

signatures

 can “sign” a message
 sign(M, private key)

– but actually
– use Media Digest algorithm to compute hash
– say MD5 -> 128 bits (hash(M) -> bit string)
– then run private key over bit string to get

signature
– send (Msg, signature) to receiver

 receiver uses sender public key to verify

41

confidentiality

 you send me secure email
 obtain my public key SOMEHOW
 encrypt(Msg, public) -> encrypted message
 OK, the message has to be ASCII ...
 I decrypt with my private key
 ? how did you get my public key
 ? what if Joe spoofed me with his public

key and you sent him a msg for me

42

big news (well maybe not)

 public, private keys are cybercrud
 one must make sure public key is somehow

truly associated with party X
 and not party Y spoofing party X
 known as “man in the middle” attack if that

happens
 various schemes exist for acquiring public

keys (ssh/ssl/pgp, including “certificates”)

43

so note four operations

 sign (mac hash) with SELF private key
 verify (mac hash) with OTHER public key
 encrypt with SELF | OTHER public key
 decrypt with SELF private key

– definitely not OTHER, else bad news
 RSA can do all 4. DSS can do sign/verify

44

Certificate Authorities

 it is presumed that one way to solve the
problem of public key distribution

 is to get a signed public key from a trusted
3rd party

 call that node a CA - certificate authority
 nodes need the CA’s public key to start with
 can verify “certificate” signed by CA
 certificate = Joe Bob’s public key, CA sig

45

certificate then roughly

 your public key
 your name
 a possible timestamp (it expires at some

point)
 signature over all of the above
 you need signer’s public key to verify

– who signed signer’s certificate ?

46

certs, cont.

 certificate can be stored anywhere
– only CA can generate them

 CA doesn’t have to be accessible
– but would be if network database of course

 so why don’t we have CAs ?
– netscape supports certificates and there are a

few (verisign)
– “cross-certification” as opposed to hierarchical

cert. may not be possible in some cases

47

X509 certificate

 version
 serialNumber - with CA’s name, ids cert.
 signature - (not the signature), names

algorithm used to compute signature
 issuer - name of CA
 validity - how long it lasts
 subject - name of user

48

X 509 cont.

 subjectPublicKeyInfo - contains algorithm
identifier AND public key

 ETC.
 encrypted - (the signature)

49

certificate formats - > 1 kind

 a few kinds out there at the moment
 X509 (e.g., netscape/web)

– may be quite large
 RSA may be available in DNS

– call ‘em DNS certificates
– sign user name/IP/DNS names

 PGP has its own kind

50

bottom line:

 a certificate is basically a signed public key
 (public key, name, timestamp, signature)
 what good are they?
 authentication mechanism
 if widely deployed, could replace passwords
 ask how they are stored?

– if stored on computer, and computer crashes ...?
– and where is your private key stored too?

51

principles of authentication
 something you know

– a password/passphrase/PIN number
– “abracadabra”

 something you have
– an object, a VISA card, a “dongle”, a smart card, a

physical key
 something you are

– your fingerprint/retina pattern
 combining these usually improves security

– Pin # and VISA card

52

passwords - words while passing
thru

 password mechanisms include:
 1. passwords used as authentication;

– e.g., with DES on UNIX (prove you know shared-
secret)

 2. authentication done as plaintext over network
– telnet/ftp/pop/http basic authentication

 3. advanced password algorithms:
– one time password or variations on that theme
– challenge-response with a
– hw token (counter or timestamp)

53

passwords

 classic password algorithm:
– type in a string (blank the screen)
– convert the string via DES/MD algorithm to a

hash
– compare the hash to a saved hash in a file
– better: hash a fixed known thing that is

somehow unique to user (userid ...)
– this helps rule out on-line brute force

comparison that can match > 1 user in a
password file

54

password problems
 the password is weak

– force the user to type in a stronger password
 the user writes the password down

– on a card and then launders it!
– or puts it on a yellow stickee on his monitor

 dictionary attacks on passwords
 brute-force attacks because password file is easily

available
– exploit gets it or multi-user system makes it easy to get

to

55

password problems cont.

 variation on weakness
– the password set of characters is too limited
– too short

» uppercase only
» a 4-digit PIN number

– mathematically not terribly random
» 256-bit space with ASCII means you lost half your

space (7 out of 8 bits)

 a random # is best, expressed in hex

56

password attacks, cont.
 someone sees you type it in

– PIN number in a public place ...
– of course, in that case, there are 2 authentication

mechanisms
 if attacker can obtain password file

– they can take their time guessing to see if they can
match Alice/Bob/other users hash

– off-line attack
– sometimes on-line attack may be done
– this is why you get 4 tries and then the bank machine

eats your card (or login slows down)

57

password meta-problems
 user has many passwords

– different for every computer
– hard to remember

 which is why security is:
– usually not helpful in terms of “ease of use”
– consider the W98 “hit ESC to get around the password”

 not a good system in several variations
– they make you change your password every 30 days
– you vary between “hi” and “there”
– what is your Mother’s Maiden Name?

58

password meta-problems

 ARE THERE BETTER SCHEMES?
– yes, but they are uncommon
– combine > 1 of the basic authentication ideas
– one-time passwords/hardware tokens
– why certificates are better, aren’t they?

59

password case #1 - ssh guessing
 password-based protocols suffer from

RANDOM machine-based distributed
password guessing attacks.

 ssh/windows login (fileshare)/sql login
– probably not telnet so much anymore … (still

there though)
 what are e.g., ssh counter-measures?
 what are botnets doing about it?

60

trust relationships are
 fundamental to distributed secure systems
 understand the trust relationship 1st
 then design the system
 risk alleviation systems may be able to takeover when

trust relationships are too hard
– bank card is stolen - only out $50

 trust relationships consist of
– us (or us1 plus us2) versus them

 e.g., every computer cannot trust every other computer on
the Internet by definition

 interior lines are important

61

study questions
 given an encryption algorithm like DES, could

you design a key establishment protocol that
computes a new shared secret between Alice and
Bob?

 how do you protect a private-key on-line, on a
multi-user o.s.?

 what issues can you think of with storing keys on
a computer?

 cryptanalysis is made easier by doing what? where
possible.

62

one more question:
 your bank has just deployed a new wonderful eye-

ball scan authentication technique
– scan eyeball and store in computer file like so:

» (name, eyeball-scan-bits)
– user at ATM has eye-ball scanned, compared with bits

on computer over network to authenticate
 how many ways can you think of to attack this

system?
 what problem previously mentioned does this

sound like? is it the same problem?

63

modest homework request
 get a partner in class
 exchange email addresses
 install GNUPG (pgp in modern guise)
 now send each other a SEKRAT MESSAGE

– that is signed
– and encrypted

 be the 1st on the block to become a GNUPG user

