
1Jim Binkley

transport/app-layer: ssh & ssl

Network Mgmt/Sec.

2Jim Binkley

Outline
secure shell
– intro/how to use it/features, etc
– v1 protocol
– v2 quick overview

secure socket layer (ssl)
– intro
– protocol

conclusion - what are trust models?

3Jim Binkley

public-key crypto review
public-key and private-key pair
– must be generated

private-key must be securely stored
– often with passphrase

public-key must be securely transmitted and
bound to identity (id, public-key)
– Alice must have Bob’s public-key tied to Bob’s

identity
– not Bart’s identity

4Jim Binkley

certificate, etc.
signed public-key
we verify a public-key with a copy of the signer’s
public-key
– this may be a “root” certificate

attacks may thus include:
– 1. obtain private key
– 2. MITM – here is “bob” (bart’s) public key, go ahead

and encrypt with it :-> …
– 3. hack Alice’s box and use her public key even though

you aren’t Alice

5Jim Binkley

what is secure shell?
a secure replacement for rlogin/rsh/rcp OR
telnet/ftp
slogin/ssh/scp clients talk to sshd, tcp, port 22
in two versions ssh 1.0 and ssh 2.0
2.0 has undergoing IETF standardization (secsh
WG)
– differences are incompatible and involve precise details

of security protocol, and key mgmt. capabilities

6Jim Binkley

just to be clear
for rlogin, we have slogin
for rsh, we have ssh
for rcp, we have scp, sftp in v2
for rshd, we have sshd
– /usr/local/sbin/sshd (sshd1 and sshd2 from v2

POV)
and less reason to use telnet and ftp with a
password

7Jim Binkley

features
public-key based authentication
– in v2, may be able to use various kinds of

certificates as well
– in v1, RSA keys, and/or better password

authentication
» password NOT sent in clear, but encrypted with

server-side public-key

bulk packets are encrypted (+ MAC used)
/etc/hosts.equiv and ~/.rhost NOT used

8Jim Binkley

features, cont.
support exists in addition for port
redirection “tunnels” or connections
between ssh capable hosts
also can automatically run remote X-clients
over ssh connection to local X-server
– thus make X more secure

or simply redirect other insecure TCP
services to use ssh (e.g., email)

9Jim Binkley

Secure Shell - bibliography
ssh, v1 IETF-draft, draft-ylonen-ssh-protocol-
00.txt, “The SSH Remote Login Protocol”, T.
Ylonen, Helsinki, 1995
IETF secsh working group, RFCs include:
– protocol architecture, 4251
– transport protocol, 4253
– authentication sub-protocol, 4252
– connection sub-protocol, 4254

ORA book – SSH – The Secure Shell, 2001

10Jim Binkley

URLs of interest
www.ssh.fi – original home
www.ietf.org/html.charters/secsh-
charter.html - IETF wg
www.openssh.org - openssh distribution
note: for windows, shows up in cygwin
– http://sources.redhat.com/cygwin

windows – putty is another possibility

11Jim Binkley

v1 authentication mechanisms
can include rsh compatibility with
/etc/hosts.equiv, and .rhost, but why?
password authentication
– password is encrypted with server-side RSA

public-key, NOT SENT IN CLEAR
RSA-based authentication using ssh-keygen
and passphrase

12Jim Binkley

v1 encryption included:
idea - 128bit key (default)
des, 3des
blowfish
rc4

13Jim Binkley

strong piece of my mind ...
don’t use rsh
sshv2 doesn’t fall back to rsh
/etc/inetd.conf, comment out and restart
inetd
– # shell ... rshd

turn off telnet/ftp too in inetd.conf

14Jim Binkley

how to use it
assume jrb is here and wants to login as jrb
“there”
% slogin [-l jrb] there.cs.pdx.edu
– prompted for password or passphrase

assume I want to run a command remotely
% ssh there.cs.pdx.edu ls -l

15Jim Binkley

file copy (unix)
from here to there
– % scp here.txt jrb@there.cs.pdx.edu:
– file ends up as here.txt on ~jrb on there
– you can of course do absolute copy

from there to here
– % scp jrb@there.cs.pdx.edu.:here.txt

here2.txt
recursive directory copy
– % scp -r here.dir jrb@there.cs.pdx.edu:

16Jim Binkley

the remote X trick
ssh -c blowfish -f -X user@overthere.org
xterm -ls -r -title “overthere-sys”

i.e., start an xterm over there, and
send the X bits courtesy of ssh
note use of blowfish for encryption

17Jim Binkley

X11 connection forwarding

tcp/ssh net
channel sshd/port 22

xterm runs hereXserver gets bits locally

local channel

18Jim Binkley

ssh-keygen in v1
to create RSA key on here for there
% ssh-keygen
– in ~user/.ssh we have

» identity (your private key)
» identity.pub (your public key)
» authorized_keys (key collection from other systems)

take identity.pub (ASCII) and move to there
concatenate at end of .ssh/authorized_keys
now use passphrase to “login”

19Jim Binkley

some important .ssh files
under ~user/.ssh we may have
authorized_keys - public keys from remote
systems that you created
known_hosts - host keys that ssh stored for
you (other guy’s public key)
identity - private key
identity.pub - public key

20Jim Binkley

v1 protocol description

1. client (C) TCP connection to server (S)
2. S sends ASCII version ident string
3. C sends own version in ASCII

both sides learn about version and can
make compatibility decisions
4. both sides switch to binary packet-based mode
5. server sends RSA public-key (host key) +
regenerated RSA key on per hour basis

21Jim Binkley

protocol description, cont.
6. client generates 256 bit session key,

encrypts with RSA keys, sends
encrypted session key to S. list of
algorithms for bulk payload included.

7. both sides then begin to encrypt
8. client may choose to request allocation of

ptty, start X11, or do tcp/ip port
forwarding, auth. agent forwarding, shell
or command execution

22Jim Binkley

authentication with password
authentication sub-phase must occur before
remote shell executed
distinct authentication phase POST session
key/crypto setup
client sends server user-name
client sucks in password from user post password
prompt
encrypts and sends to server
server either accepts or fails ...

23Jim Binkley

authentication with user-side
public-key

client has a priori stored public key on
server
server creates challenge with client public
key, stored on server, sends to client
client must decrypt with private key, and
other crypto dressing
returns MD5 hash to server under startup
encryption mechanisms

24Jim Binkley

note: password authentication may
use more complex techniques

OTP
S/KEY
– based on MD sequence of generated passwords

token fob (e.g., RSA produced)

25Jim Binkley

note one security tradeoff
client has to believe server public key a-
priori
– otherwise possible man-in-the-middle attack
– client-side can store public keys and make sure

they don’t change
– or in v2, begin to use a priori server certificates

or somehow (TBD) access Public-Key
Infrastructure

26Jim Binkley

v2 differences (quick/dirty)
required public-key algorithm is DSS [FIPS-186],
Digital Signature Standard, 1994
v1 trust model is that client has local key database
of public keys
– manual ...

v2 adds possibility of storage of single CA for
multiple keys (of course ... multi CAs likely ...)
formalizes transport with sub-protocols for
authentication and connection (port-forwarding)

27Jim Binkley

architecture is more complex
v1 not modular
– not committee either

ssh has transport/auth/connection protocols etc
auth protocols
– deal with publickey/password auth etc.

connection protocol
– deal with port forwardig, psuedo-terminals, data

compression
transport
– server auth, algorithm negotiation, session kehys,

privacy, integrity

28Jim Binkley

key exchange
1st do algorithm negotiation
– (cookie, algorithms including

encryption/mac/compression/languages)
authenticated key exchange follows
rekeying may occur from either side
– on time or data basis (one hour or 1 gbyte)

29Jim Binkley

v2, cont.
explicit use of Diffie-Hellman to negotiate session
keys (DH and sha)
AES now available, idea is NOT due to patents
protocol #1 lacked strong integrity, which is fixed
MAC algorithms used include: hmac-sha1
(required), hmac-sha-96, hmac-md5, hmac-md5-
96
public-key, certificate formats include:
– ssh-dss (required)
– x509v3 (recommended), SPKI, OpenPGP

30Jim Binkley

attacks against ssh
v1: crc overflow attack
– widespread exploits

password guessing attacks are 7x24
– password auth is convenient but getting hacked is not convenient

MITM attacks based on lack of knowledge of keys or
distribution of keys
non-passphrase use of pre-distributed RSA keys MAY
lead to fanout attacks
of course can’t due much about covert channels, TCP/IP
attacks (SYN attacks) or traffic analysis

31Jim Binkley

summary for ssh
if public key not securely distributed MITM
is possible
fingerprints are useful
– ssh-keygen -l

ssh may be used for VPNs
– at app layer (-X) or even at lower layers

effective replacement for rsh/telnet/ftp
what is trust model?

32Jim Binkley

ssh study questions
1. what is best practice or best practices for
securing ssh against MITM attacks?
2. is ssh secure in any sense against
possible TCP highjacking attacks?
3. what could an attacker do to you if they
replaced your ssh *client* with a new better
one?

33Jim Binkley

ssl - secure socket layer
intro
the protocol
a bit on servers/certificates

34Jim Binkley

ssl - secure socket layer
originally developed by netscape for web
client to web browser security
SSL designed to be under HTTP
– HTTP | SSL | TCP
– unlike SHTTP which is security IN HTTP

can in theory be used with non-HTTP based
protocols
– experiments exist; e.g., telnet over SSL

35Jim Binkley

overview
certificate-based auth/privacy protocol
typically only server is authenticated
– based on pre-distributed root keys
– although new server or root keys can be pushed out to

clients
user certs possible but rare
prevents easedropping, tampering, message
forgery
does not prevent foo.com/visa.html visa database

36Jim Binkley

bibliography
William Stallings, Cryptography and Network
Security, 2nd edition, 1998
RFC2246 - The TLS Protocol, Version 1.0,
Dierks, Allen, Jan 1999
RFC 4346 is current version 1.1
– see this RFC for differences with 1.0

www.openssl.org – based on SSLeay library
– crypto lib, ssl toolkit, used with apache etc.

37Jim Binkley

ssl layering

http telnet

secure socket layer

tcp

very session-layer hmmm...

38Jim Binkley

sub-protocol/s in SSLs
ssl record protocol - bulk crypto; i.e., the
result of initial negotiation and per packet
– telnet/http packets encapsulated

ssl handshake protocol - initial startup,
session-key/crypto transforms decided
change cipher spec - causes pending cipher
state to become real state (trivial protocol)
alert protocol - errors

39Jim Binkley

rough protocol exchange
tcp socket client/server port 443 opened
(https:www.jiminc.com)
ssl handshake protocol occurs - establish
session-key/cipher suite to be used
ssl change_cipher_spec - finish initial
session setup
ssl record protocol used with http
encapsulated inside it

40Jim Binkley

handshake protocol
client server

hellos

certificate
server_key_exchange

certificate_request
server_hello_done

client_hello
server_hello

server key
mgmt.

41Jim Binkley

handshake protocol
client server

client key
mgmt.

change_cipher_spec

finished

certificate
client_key_exchange

handshake
final
phase

certificate_verify

finished
change_cipher_spec

42Jim Binkley

hellos
client_hello parameters:
– version: ssl version
– random: random values generated by client, timestamp

+ 28 bytes of randomness (nonce + anti-replay
protection)

– session ID: 0 means new session, else session update
– cipher suite: list of possible sets of crypto transforms to

be used, session key + crypto
– compression method: list of compression methods

client can do

43Jim Binkley

server-side hello parameters
same parameters however:
– random field is server generated, not related to

client random field
– sessionID - if client field was zero, generated

by server, else match client
– cipherSuite - client proposes, server selects

note then: server/client both generated
random values and exchanged them

44Jim Binkley

cipherSuite parameters
ciper suite contains a # of possibilities
key exchange methods:
– RSA used; i.e., public key encrypts session-key.

certificate must be provided
– Diffie-Hellman in several forms,

fixed/ephemeral/anonymous (no authentication)
– Fortezza (but not in IETF version)

cipher spec specifies encryption/MAC
– encryption: rc4, rc2, des, 3des, des40, idea
– hash: md5/sha-1
– other params, hash size (16/20), iv size, etc.

45Jim Binkley

server-side authentication and
key exchange

server authentication phase - what happens
depends on key exchange protocol
if not anonymous DH, server sends 1 (or
more) X.509 certificates in certificate
message (may be list)
– signed by some CA, client assumed to have CA

public key in CA certificate so it can verify
certificate or may have server cert. already

46Jim Binkley

server key exchange message
sent if needed; .e.g, we need it for:
– anonymous and ephemeral DH (latter includes

signature)
not needed for fixed DH or RSA key
exchange to be used
– DH params already sent in certificate

e.g., with ephemeral DH, we can now
compute a one-time session key to be used
with cipher spec algorithms

47Jim Binkley

server certificate_request
message

server that is not using anonymous DH may
now request certificate from client (user
cert)
includes two params: certificate type and
certificate authorities e.g.,
– RSA (sig only), DSS, and various forms for use

with DH
cert. authorities: list of DN acceptable to
server

48Jim Binkley

server_done message
always sent - client may now take key
materials and
verify server key
– else error

initiate optional client authentication
– if none, send no_certificate alert

and key exchange phase

49Jim Binkley

client authentication
if server asks, client sends optional
certificate message
followed by client_key exchange message
which is REQUIRED
– if RSA, client generates pre-master secret and

encrypts with server public key or temporary
key from server_key_exchange

– if DH ephemeral, send DH parameters

50Jim Binkley

client authentication, cont.
client may send
certificate_verify_message as last part
this is sent if client sent its own certificate
which has signing capability
client uses private key to sign parameters
that server can use client’s public key to
verify client has keys
thus server knows client has private/public
key pair

51Jim Binkley

final finish phase
client sends change_cipher_spec message
– means now using negotiated algorithms and

keys
– basically boolean

client then sends finished msg using
negotiated keys
server does likewise, handshake now
compete

52Jim Binkley

some TLS differences
fortezza dropped
HMAC versions of md5/sha expected to be
used

53Jim Binkley

netscape 4.0 certificate download
certificates may be imported into netscape
X509 format including binary or text
– DER encoded (binary)
– PKCS #7 in several forms
– text format if base64 encoded

-------BEGIN CERTIFICATE----
garp ...
-------END CERTIFICATE----

54Jim Binkley

MIME-based content types
can be used to give netscape client certs via
HTTP download
application/x-x509-user-cert - it’s a user
certificate
– private key must exist

application/x-x509-ca-cert - CA
certificate, may be cert chain of CAs
application/x-x509-email-cert for
S/MIME

55Jim Binkley

netscape certificate types (client
POV)

CA certificate
– self-signed by CA
– if server cert shows up signed by CA, netscape

verifies using CA public key and accepts
site certificate (web server cert)
– if not signed by CA, netscape asks user if

he/she wants to trust it

56Jim Binkley

netscape user cert process (e.g.)
client connects to http://mysite/cert-request.html
user prompted via form for relevant info (should
be some process here for site admin to make sure
user is user)
html form contains <KEYGEN>
– makes netscape create public/private keys
– makes user create passphrase
– server signed HTML public key returned to server

57Jim Binkley

user cert. generation continued
certificate issuer now has user public key,
can begin certificate generation process
creates locally signed (with local CA
private key) user certificate
sends email to user with URL for certificate
user can use netscape now to download
certificate

58Jim Binkley

issues of trust
server-side
– public server server certificate needs to be signed by

somebody else (so you can believe that somebody else
is vouching for them ...)

– self-signed certificate by Company X for Company X
employees does not need this

client-side
– server-side encryption does not limit who uses the

server ... therefore may want user authentication
– if we have user-side certs, who should issue them?

59Jim Binkley

user-side certs vs. passwords
pro: certificate may go over network, ASCII
password should not
pro (and con ...): certificates are stored as files
(don’t have to remember)
– but files can be lost
– files are per computer
– passphrase is important here and you have to remember

it!

pro: may be stronger form of authentication
– this is veyr likely true

60Jim Binkley

certificate extensions
certificates can have X509 extensions and
hence be customized for individual users or
user groups
– Clearance = Top Secret
– might decide what part of web site particular

user can see
– strong argument for in-house certificate

generation (if functionality needed)

61Jim Binkley

import vs. export cert. services?
external vendors for cert. services exist;
e.g., VeriSign, BBN, etc.
company might wish to do it in-house
though, why?
– tight control of management policies
– use extensions
– may or may not have better turn-around on

needed services (delete this cert. fast ...)

62Jim Binkley

note both ssh/ssl may be used for
“wrapping” in some sense

ssh port forwarding
ssltunnel application/s
– in one case basically l2/l3 VPN
– in another case a wrapper for POP/SMTP and

can run out of inetd
ssl even basis of some firewall products
curious thing though:
– tcp/udp datagrams encapsulated inside

63Jim Binkley

what are trust models for?
ipsec?
ssh? - consider multi-user systems
ssl?
– consider e-commerce? (risk vs. trust)

what kinds of interactions are possible?
what kinds of interactions are NOT possible
point: you can distinguish nonsense vs.
sense

