
An Algorithm for Anomaly-based Botnet Detection

James R. Binkley
Computer Science Dept.
Portland State University

Portland, OR, USA
jrb@cs.pdx.edu

Suresh Singh
Computer Science Dept.
Portland State University

Portland, OR, USA
singh@cs.pdx.edu

Abstract

We present an anomaly-based algorithm for detecting
IRC-based botnet meshes. The algorithm combines an
IRC mesh detection component with a TCP scan detec-
tion heuristic called the TCP work weight. The IRC com-
ponent produces two tuples, one for determining the IRC
mesh based on IP channel names, and a sub-tuple which
collects statistics (including the TCP work weight) on in-
dividual IRC hosts in channels. We sort the channels by
the number of scanners producing a sorted list of poten-
tial botnets. This algorithm has been deployed in PSU’s
DMZ for over a year and has proven effective in reducing
the number of botnet clients.

1 Introduction

Botnets [6] [5] are a current scourge of the Internet. Bot-
nets may result in high rates of TCP syn scanning (for
example, see [4]), voluminous spam, or distributed DOS
attacks (see [2]).

At Portland State University, in the last few years we
began to realize that many of our security incidents had
a common thread which proved to be botnet related. As
a result we developed an anomaly-based algorithm for
detection of botnet client meshes and made it a sub-
component of our open-source ourmon [3] [9] network
management and anomaly detection system. The system
is currently deployed in our DMZ where we see peak
traffic periods of 60k pps. In the last year, this system
has proven beneficial in reducing the number of botnet
clients on campus.

Our anomaly-based system combines an IRC [7] pars-
ing component with a syn-scanner detection system
aimed at individual IP hosts. The IRC parsing system
collects information on TCP packets and determines an
IRC channel, which we define as a set of IP hosts. We
then correlate the IP host information over a large set of
data sampled during the current day which tells us if an

individual host in the IP channel was a scanner. We then
sort the IRC channels by scanning count, with the top
suspect channels labeled as possible evil channels. This
algorithm is not signature-based in any way. It does not
rely on ports or known botnet command strings. As a
result, we are immune to zero-day problems. Our algo-
rithm does assume that IRC is cleartext and that attacks
are being made with the botnet mesh.

2 IRC Botnet Detection Algorithm

Our architecture relies on the observation that IRC hosts
are grouped into channels by a channel name (for exam-
ple, ”F7”, or ”ubuntu” might be channel names), and that
an �evil channel is an IRC channel with a majority of hosts
performing TCP SYN scanning.

The front-end data collector gathers three kinds of list
tuples that are useful for benign IRC, botnet detection,
and scanner detection. The tuples consist of two kinds
of IRC tuples and the TCP syn tuple. The probe gathers
these tuples over its thirty second sampling period. All
tuples are then sent to the back-end for further process-
ing. In the probe, the entire campus TCP syn tuple set
is filtered into a smaller subset which informally consists
of hosts observed sending anomalous amounts of TCP
syns. This syn tuple subset is called the ”worm set” and
is typically orders of magnitude smaller than the entire
set of IP sources found in the campus TCP syn set.

The TCP syn scanner list tuple has the following sim-
plified form:

(IP source address, SYNS, SYNACKS,
FINSSENT, FINSBACK, RESETS,
PKTSSENT, PKTSBACK)

The logical key in this tuple is an IP source address.
SYNS, FINS (all kinds), and RESETS are counts of TCP
control packets. SYNS are counts of SYN packets sent
from the IP source, and SYNACKS are a subset of only

those SYNS sent with the ACK flag set. FINS sent both
ways are counted. RESETS are counted when sent back
to the IP source. The PKTSSENT counts the total pack-
ets sent by the IP source. PKTSBACK counts the total
pkts returned to the IP source. Other fields exist but are
not relevant to this paper. This information is useful for
determining what kind of scanning is occurring and of-
ten gives a rough network-based indication of the kind of
exploit in use.

We define a metric which we call the TCP work
weight. The work weight is easy to compute and is com-
puted by the probe per IP source as follows:

w = (Ss + Fs + Rr)/Tsr

It is expressed as a percent. The rough idea is that
we take the count of TCP control packets (SYN’s plus
SYNACKs sent, FIN’s sent and RESETS) and divide that
count by the total number of TCP packets (Tsr). Obvi-
ously 100% here is a bad sign and implies a true anomaly
of some sort. Such a value is typically associated with a
scanner or worm although some forms of P2P (and email
servers) may have high work weights for shorter peri-
ods of time. The IRC module in the probe uses the TCP
list as an underlying ”tool”, and extracts the TCP work
weight from it for any IRC host.

We should point out that we have over two years worth
of experience with the work weight at this point. We have
learned that high work weights with hosts are caused by
three possible causes including 1. scanners (typically syn
scanners), 2. clients lacking a server for some reason
or 3. P2P hosts (usually Gnutella is the application) IP
peers. In general scanners are the most common reason
for a high work weight. We also know that that the work
weight clusters into either high values or low values (say
0..30%). Attackers fall into the higher range. P2P clients
on average fall into the lower range.

Typically the average over many samples is of inter-
est. However in the case of IRC we decided to simply
take the maximum work weight seen over all the thirty
second samples for a day. This is because an otherwise
normal host may be ordered remotely to do scanning for
a short period of the day. One host by itself in an IRC
channel with a high work weight may not be anoma-
lous. However if a channel has ten hosts out of twelve
with high work weights suspicion is justified. As a re-
sult, work weights associated with IRC channels in our
summarization reports are maximum weights seen across
all the samples in a daily report.

There are two IRC lists, called the channel list and
the node list. The channel list has the following tuple
structure:

(CHANNAME, HITS, JOINS, PRIVMSGS,
NOIPS, IP_LIST}

The channel name is the case-insensitive IRC channel
name extracted from JOIN and PRIVMSG IRC mes-
sages by the IRC scanner. The probe’s scanner is hand-
crafted C code that looks at the first 256 bytes of the
L7 payload for TCP messages only and extracts IRC to-
kens for the four kinds of messages of interest. HITS
is the total count of JOINS and PRIVMSGS, JOINS
and PRIVMSGS are counts of that particular kind of
message. NOIPS is the number of IP addresses in the
IP LIST, which follows the tuple. Thus a channel tuple
gives a key (the channel name) with a few message count
statistics and a list of IRC hosts in the channel expressed
as IP addresses.

The node list gives per IP statistics for any IP address
in any IRC channel. Informally a channel may be viewed
as a directory, and a host may be viewed as a directory
entry (although a host may actually be in more than one
channel). The node list has the following tuple structure
(not all counters shown):

(IPSRC, TOTALMSG, JOINS, PINGS, PONGS,
PRIVMSGS, CHANNELS, SERVERHITS, WW}

The key per tuple is an IP source address. Various mes-
sage statistics are given including JOIN, PING, PONG,
and PRIVMSG counts. The number of observed per host
channels is supplied. SERVERHITS indicates the num-
ber of messages sent to/from a host. Thus this counter
indicates whether a host is acting as an IRC server. The
WW (work weight) as mentioned previously is derived
from the TCP syn module.

One additional IRC statistic is gathered by the front-
end which consists of total counts of the four kinds of
IRC messages seen by the probe during the sample pe-
riod. (This tuple is displayed by the back-end as an
RRDTOOL-based graph - due to space limitations we
cannot show such a graph in the paper). It shows that
IRC is basically a slow phenomenon with only a few
messages per second, even though our campus may have
5000 IP hosts active during a day. As a result our IRC
evil channel analysis is based on a slower time scale,
hours and days.

The IRC tuples are passed to the backend for report
generation. The backend program produces an hourly
text report (updated on the hour) which is called ircre-
port today.txt. This file is available on the web for anal-
ysis. Data in this report is broken up into three major sec-
tions including global counts, channel statistics, and per
host statistics. Channel statistics and per host statistical
sections are further broken up into various sub-reports
where data is typically sorted by some key statistic.

We can distinguish the following IRC report sub-
sections:

1. evil channels - channels with too many hosts with a
high work weight

2. channels sorted by maximum messages.

3. channels with host statistics - each channel shows
the host IP in the channel with host stats.

4. servers sorted by max messages - hosts that are IRC
servers are sorted by max messages.

5. hosts with join messages but no privmsgs - JOINs
only but no data payloads.

6. hosts with any signs of worminess - hosts with high
work weights.

For purposes of illustration in table 1 we look at one
benign example which comes from the per channel host
statistics section. Counts given for our example were
taken from twelve hours of data (since midnight) and are
typical for a small IRC chat group. 1

In our example 1, a channel named ”ubuntu” has four
hosts in it. Three are local and the server (S) is remote.
Total message counts (of the 4 kinds parsed) and JOIN,
PING, PONG, and PRIVMSG counts are given. Max-
chans is the number of channels seen during the period
for that host, and maxworm is the maximum work weight
seen. We do not believe this channel based on the above
data is ”evil”.

Now let us see how this data may be correlated to
plainly point out anomalous IRC-based botnet behavior.

3 Botnet Examples

Let us look at three examples which illustrate the opera-
tion of our algorithm. Table 2 gives us three items from
our evil channel report. The purpose of this selection
is to illustrate, on the one hand, the effectiveness of our
algorithm in detecting evil channels while on the other
hand showing some borderline cases that require addi-
tional analysis (e.g., examining port reports) First, we
present a botnet client mesh. By definition, the server
is off-campus and a few hosts have been captured on-
campus to become part of the botnet. We look at two sub-
sections of the hourly IRC report to find our evil channel
which is named ”F7”. We look at our evil channel sort,
and discover that F7 shown in table 2 is named as a chan-
nel in that list and occupies a high rank in the list.

Channel F7 is high in the evil channel list simply be-
cause it has 4 out of 6 hosts with high work weights.
The ”evil” flag at the end of the column is set to E if a
potential evil channel has more than 1 anomalous host.
Next we look at the report sub-section which breaks host
statistics out for the channel F7.

1All IP addresses have been changed and are represented as sym-
bolic addresses. In addition the reader should note that our current
output format is simply an ASCII report. However we represent it here
in tabular format.

In table 3 we see the part of the report that shows hosts
in a channel. In channel F7, we have one remote server
and five infected local hosts. Four of those hosts have
very high maximum work weights. We know from ex-
perience with the work weight (and also by looking at
logs from both Ourmon and other systems) that the hosts
are performing SYN scanning. Ourmon logs for the syn
tuple will typically show that the hosts in question have
been performing scanning aimed at Microsoft exploits on
port 445 (typically lsass-based exploits, for example, see
[4]).

We have used ngrep in the past to prove beyond a
shadow of a doubt that examples like our F7 botnet client
are indeed malign. At this point in time, we no longer
feel the need to use a tool like ngrep to prove that ourmon
has detected an evil mesh. However the reader might de-
sire to see such proof and in addition ngrep can still be
very useful as an aid in host forensics. For example, one
may be able to gather valuable clues about the exploit
used. An ngrep sent from a local client to the server in
question (net2.1) showed messages like the following:

ngrep -q host net2.1
T net1.1:1053 -> net2.1:30591 [AP]ˆ

PRIVMSG #F7 :[Lsass]: Fuxed IP: net1.2

Here we see a report from a bot client back to the
server that host net1.2 has been exploited. The exploit
used is also mentioned.

The other two examples in table 2 are not evil chan-
nels. s3reporter is a IRC game (which is why all partici-
pating IP addresses are marked as servers) for which we
sometimes get a high work weight. However, since the
high work weight is associated with a remote host (see
table 3), we do not consider it further. The third exam-
ple has a local IP host with a high work weight which
implies evil channel. However, this is a borderline case
(with only one client) where the high work weight may
be because of software glitches (e.g., meetingmaker loss
of server causes this type of bot-like behavior) or a p2p
outage of some sort. These types of channels require ad-
ditional analysis where we need to examine port reports
in more detail. Some of the specifics that we look for
include, for example,

• L3/L4 dst counts of unique L3 and L4 destinations.
This can suggest whether a host is traversing IP des-
tinations or ports or both.

• EWORM - a flag system to indicate if traffic exists
that is 2-way or if network errors exist. E.g., E and
R indicate ICMP errors or RESETS returned to the
host. O indicates a lack of FINS. M indicates no
non-control packets returned.

Table 1: Benign IRC Channel - Channel/Host Report
channel/ip tmsg tjoin tping tpong tprivmsg maxchans maxworm server
ubuntu/net1.host1 11598 1282 1912 1910 6494 4 43 H
ubuntu/net1.host2 7265 938 619 622 5086 3 0 H
ubuntu/net1.host3 17218 1926 4123 4100 7069 5 37 H
ubuntu/net2.host1 28152 3222 3913 3904 17113 8 0 S

Table 2: Malign and normal IRC Client Botnet - Evil Channel Report
channel msgs joins privmsgs ipcount wormyhosts evil
F7 118 19 99 6 4 E
s3reporter 2259 25 2234 3 1 E
thespicebox 23 8 15 2 1 E

Table 3: Malign and Benign Channels - Channel/Host Report
channel/ip tmsg tjoin tping tpong tprivmsg maxchans maxworm server
F7/net1.1 1205 24 377 376 428 2 42 H
F7/net1.2 113 6 39 43 25 1 96 H
F7/net1.3 144 2 60 61 21 1 94 H
F7/net1.4 46 3 12 14 17 1 90 H
F7/net1.5 701 2 343 345 11 1 90 H
F7/net2.1 1300 19 587 593 101 1 16 S

s3reporter/net1.1 3949 25 844 846 2234 1 5 S
s3reporter/net2.1 6899 36 794 794 5275 2 90 S
s3reporter/net3.1 4525 21 704 702 3098 2 19 S

thespicebox/net1.1 3106 101 433 661 1911 2 83 H
thespicebox/net2.1 10943 373 1828 2037 6705 4 43 S

• Sampled destination ports sometimes help to char-
acterize the nature of the attack. For example, given
that in our network we know that Microsoft file
share ports are blocked, scanning of port 139 and
445 is deeply suspicious. In addition nearly all of
our bot clients caught in the last year were scanning
those ports.

Thus, in the end, while out algorithm clearly shows the
presence of evail botnets, for many boderline cases, we
need to resort to additional analysis.

4 Related Work

In general the academic literature on botnet detection
is sparse. Furthermore we are not aware of any other
anomaly-based system for detection of botnets. Known
techniques include honeynets and IDS systems with sig-
nature detection. Honeynets [6] or darknets might be dis-
tributed [1] or local and can certainly prove beneficial
in terms of providing information about botnet technol-
ogy. However they may not be easily deployed in a com-
mercial environment and do not necessarily help with the
question of whether host X has worm Y. Knowledge of
useful signatures and behavior of existing botnet systems
is another venue for detection. The paper [2] presents a
good introduction to botnets and analyzes botnet archi-
tecture. An open-source system like snort [8] can be used
for detection of known botnets.

The problem with signatures is of course one may lack
the required signature for a bot known elsewhere, or a bot
may be new to the world, locally unknown, or changed,
thus defeating previously known signatures. Anomaly
detection on the other hand may detect such a system.
Problems with anomaly detection can include detection
of an IRC network that may be a botnet but has not been
used yet for attacks, hence there are no anomalies. As
our technology depends on hackers actually launching
attacks, there is no guarantee that we can detect every
infected system. One can also argue that anomaly de-
tection is ”too late”. It is certainly better to detect an
initial attack with a signature when it first occurs and
get an exploited system fixed before it is used for spam
or denial of service attacks. We believe signatures and
anomaly detection are often complimentary and should
not be viewed as somehow competitive. All of these
techniques (honeypot, IDS, and anomaly detection) can
be useful and provide slightly different set of informa-
tion.

5 Conclusion

In this paper we have presented our current system for
bot anomaly detection. We discussed how we combined

TCP-based anomaly detection with IRC tokenization and
IRC message statistics to create a system that can clearly
detect client botnets and how also gross statistical mea-
sures can easily reveal bot servers. This system is cur-
rently deployed in our network and works well.

The white paper [5] calls for systems to detect botnets
via more robust detection means. We believe our current
anomaly-based detection system is an advance in the art,
but it could be easily defeated by simply using a triv-
ial cipher to encode the IRC commands. As a result we
would lose information about mesh connectivity. On the
other hand we believe that detection and correlation of
attacking meshes of hosts is a valuable contribution. Our
current system should be made more general in terms
of attacks and include email and DOS attack indicators.
For future work, we intend to pursue an anamoly-based
algorithm that will work only with layer 3 and layer 4
statistics.

References

[1] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and
D. Watson, The Internet Motion Sensor: A
Distributed Blackhole Monitoring System. In
Proceedings of the Network and Distributed
Security Symposium, San Diego, CA, January
2005.

[2] P. Barford, V. Yegneswaran, An Inside Look at
Botnets, Special Workshop on Malware Detection,
Advances in Information Security, Springer
Verlag, 2006

[3] J. Binkley, B. Massey, Ourmon and Network
Monitoring Performance. Proceedings of the
Spring 2005 USENIX Conference, Freenix track,
Anaheim, April 2005.

[4] CERT Advisory CIAD-2004-10 Multiple
Vulnerabilities in Microsoft Products
http://www.cert.org/advisories/
ciad-2004-10.htm, April 2004.

[5] E. Cooke, F. Jahanian, and D. McPherson, The
zombie roundup: Understanding, detecting and
disrupting botnets. In Proceedings of Usenix
Workshop on Stepts to Reducing Unwanted Traffic
on the Internet (SRUTI ’05), Cambridge, MA, July
2005.

[6] The Honeynet Project and Research Alliance.
Know Your Enemy, Tracking Botnets.
http://honeynet.org/papers/bots,
March 2005.

[7] J. Oikarinen, D. Reed. Internet Relay Chat
Protocol. IETF RFC 1459, May 1993.

[8] Snort IDS web page.
http://www.snort.org, March 2006.

[9] Sourceforge Ourmon web page.
http://ourmon.sourceforge.net,
December 2005.

[10] Wikipedia web page.
http://en.wikipedia.org/wiki/
Internet_Relay_Chat, December 2005.

