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Abstract

Proper control of network traffic requires understanding which applications are using
the network. In particular, identifying p2p traffic is of particular importance since
it represents a rapidly growing fraction of all traffic. Prior work on classification of
peer-to-peer (p2p) traffic relied heavily on pattern matching on application (layer-
7) data. Such classifications are time consuming to generate and will become out-
dated whenever new applications appear or old applications use more encryption.
Our method uses statistical attributes of traffic to identify p2p sources and as such
is immune to encryption. In this paper, we first we identify several easy to compute
layer-3 and layer-4 attributes that enable accurate application classification. Second,
our algorithm builds a classifier based on an oracle and a one-pass Bayes algorithm
that supports rapid classification of data. This means that the classifier is built
automatically and does not require any manual input or training. The classifier
runs in real-time and we show that, on certain key measures, our algorithm out-
performs prior results. We achieve high probabilities of detection with a remarkably
low false positive rate resulting in an accuracy of classification of between 70% and
98% in most cases.
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1 Introduction

Reliable traffic classification is important for every network. Ensuring that
applications with legitimate bandwidth needs and requirements are accommo-
dated is important for any business relying on these applications for day-to-day
and core business operations. On a grander scale the growth and dynamics
of bandwidth usage is critical for network operators that need to deliver on
service level agreements and prepare for future growth.

Knowing how bandwidth is used by applications relies on accurate identifica-
tion of these applications. In this paper we explore the accurate identification
of applications by focusing on p2p applications. The speed of growth (in us-
age numbers and bandwidth consumption) and the versatility of the developer
and user community makes these (p2p) applications particularly interesting.
Analysis [12] on network traffic from a tier-1 ISP at a time (2001) when port
numbers were reliable for traffic classification showed that a significant por-
tion of network bandwidth is consumed by p2p applications. Each host could
generate anywhere from 1.6MB/day to 19.6MB/day. The growth of the p2p
bandwidth was particularly interesting: in four months the combined band-
width used by p2p applications more than doubled - from 1032GB/day to
2089GB/day [12]. The general consensus based on empirical evidence is that
this rate of growth is continuing. p2p applications clearly contribute a signifi-
cant amount of traffic and any site performing bandwidth management needs
to pay close attention to this category of application.

Unfortunately, empirical data and recent investigations [8] show us that the
traditional usage of TCP and UDP port numbers to identify applications
on the network has become unreliable. Port numbers were reliable for p2p
detection as recently as 2001, since then their usage for p2p classification
dropped significantly. Analysis on network traffic from 2003 [11] reports that
the usage of port numbers could only classify 30% (in the worst case) of p2p
traffic. Signature based classification schemes based on pattern matching are
still very accurate but, given the trend towards encrypted payloads [3], these
methods will also be unable to classify p2p traffic in the future. Thus, sev-
eral researchers, including ourselves, have started exploring machine learning
techniques as a way to classify p2p traffic.

1.1 Research Contributions

Our solution for p2p classification works at the edge of a network and is
able to classify which internal hosts participate in p2p applications as this
(the participation) occurs. Our approach is to use fully automated machine
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learning to build a p2p classifier. Indeed, our results show that this approach
achieves an accuracy of classification better than other existing methods and
does so in real-time. More importantly, our approach has the following features
which are absent in prior work:

Host classification: We classify which hosts are participating in p2p applica-
tion. We do not perform individual flow classification because we believe that
it is as informative (sometime more useful to network managers) to know if a
host participates in p2p applications than to know which flow of a particular
host is occupied by a p2p application.

Reproducibility: A difficulty with commenting on prior results is that the data
used in their analysis is proprietary. We take care to base our work on public
domain data sets [2] so that other researchers can repeat or refute or improve
our results. We also create our training data using open source tools that can
be used by anyone needing to recreate our work, these tools are described in
Section 3.

Automation: Prior results required an elaborate manual pre-classification of
the input examples. Our system works 100% automatically.

Specialization: We refine prior comments on the merits of specialized descrip-
tors. Moore and Zuev [9] described experiments where important subsets of
the data were identified. Here, we reproduce and extend those prior results.

The remainder of this paper is organized as follows. Section 2 initiates our
discussion with a description of our research criteria. Section 3 describe the
components of our solution. Section 4 presents a survey of current research
in traffic classification. Section 5 describes our selected attributes. Section 6
describes a series of experiments that explore the behavior and accuracy of
our classifier. Section 7 then describes the real-time version of this classifier
and its performance. Section 8 discusses how our approach can be extended
to the case when all p2p traffic is encrypted. Section 9 ends this paper with a
discussion of the results and future work.

2 Measures for the Quality of Classification

In order to quantify the performance of our algorithm appropriately, we com-
plete a confusion matrix during every test. An example is given in Table 1.
This table lets us define the accuracy of the classifier as the number of correct
classifications seen over all classifications: accuracy= a+d

a+b+c+d
. We require two

valuable measures to evaluate our performance: probability of detection (PD)
and probability of false positive (PF). If the classifier detects a p2p application
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Classifier prediction Real (“oracle”) Classification

nominal p2p

nominal(not p2p) a b

p2p c d
Table 1
Confusion matrix

Traffic (upto 256 bytes
               of payload)

OracleSummarizer

Learner

Classifier

Attributes

<IP Src, p2p or not p2p>

Runs in
background

Very infrequent
table updates

Fig. 1. Overall approach

there are two cases of interest. In one case the classifier correctly identified a
p2p instance. This PD is the ratio of all correctly detected p2p instances to all
actual instances of p2p applications: PD= d

b+d
. In the second case when the

classifier detects a p2p application when none is present corresponds to false
positive. Thus we define PF as the ratio of the number of p2p applications
identified when there are none present: PF= c

a+c
. Ideally our solution will have

a high PD and very low PF.

Note that systems can have high accuracies but low probabilities of detection.
For example, consider a system where 10% of its traffic is p2p and the classifier
never triggers (perhaps due to some internal fault). This classifier would score
an accuracy of 90% even though its PD was 0%. Hence, it is necessary to use
PD in addition to accuracy as a measure of quality.

3 Research Approach

Figure 1 illustrates our approach which consists of two parts – a training
component and the classifier. Traffic captured by the frontend is fed to the
summarizer in 30 second chunks. The summarizer outputs a tuple <IP src,
attr 1, attr 2, · · · > which consists of attribute values for each IP source seen.
The attributes we use are discussed in detail in section 5 but examples may
include number of ICMP errors returned to that IP src, number of SYNs seen,
etc. We note that while the traffic capture includes 256 bytes of payload per
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packet, this payload is only used by the oracle and completely ignored by the
summarizer and classifier. The attribute tuples produced by the summarizer
are fed to the classifier which in turn classifies each IP source as either running
a p2p application or not. The IP source address is not used by the classifier
to make a decision, just the attributes associated with it. The classifier runs
very fast and uses a simple table-based algorithm discussed later. The table
itself is produced by the learner in the background.

Periodically, traffic captured by the summarizer is also fed to the oracle which
uses the payload to classify the traffic as p2p or not. This information, along
with the attribute tuple produced by the summarizer, are fed to the learner
which runs a Naive Bayes learning algorithm and outputs the table used by the
classifier. The key point to note here is the following: the classifier only receives
updates from the learner very infrequently (every time a new p2p application
shows up or when we discover that the accuracy of the classifier has degraded)
thus the speed of operation of the classifier is not hindered in any way by the
learner. Indeed, our clasisfier runs in real-time.

The summarizer is implemented on FreeBSD. The oracle is based on a com-
bination of the l7-filter [1] and pattern matching scripts developed in-house.
The l7-filter is a classifier for Linux’s Netfilter that identifies applications us-
ing application data regardless of port. Our pattern matching scripts enhance
the ability of the l7-filter by using header information in addition to string
matching of the application data to identify specific p2p applications. In com-
bination, these two tools are almost completely accurate in detecting p2p
applications in addition to other applications such as servers (email, web),
botnets, scanners and irc (see also section 5 where we have examples of how
the selected attribute values depend on the underlying applications). However,
as a practical matter these tools are very slow to run and thus cannot be used
in anything approaching real-time (and obviously cannot work if the payload
is encrypted).

The learner consists of two components: an incremental discretizer (which puts
values for a given attribute into appropriate buckets of the appropriate size)
and a Naive Bayes learner. The discretizer uses a novel one-pass method ideal
for large data sets as it scans the input only once and automatically adjusts
the bin sizes to accomodate and capture changes in the data being discretized.
It also makes no apriori assumptions of the underlying numeric values being
discretized. In our case, each training data set consists of 10 million packets
so such a discretizer is very useful.

Naive Bayes classifiers are based on Bayes’ Theorem. Informally, the theorem
says next = old∗new i.e. what we’ll believe next comes from how new evidence

5



effects old beliefs. More formally:

P (H |E) =
P (H)

P (E)

∏

i

P (Ei |H)

i.e. given fragments of evidence Ei and a prior probability for a class P (H),
the theorem lets us calculate a posteriori probability P (H |E). Our learner
runs the discretizer on a data set and then runs the Bayes classifier to create
a likelihood table for each attribute. The table simply consists of two columns
labeled ’p2p’ and the other ’nominal’ (i.e., not p2p). Each row corresponds to
a bin created by the discretizer and the numeric values in each table entry (say
(i, p2p)) is a frequency count of the number of IP sources for which the given
attribute took a value in bin i and was classified by the oracle as being p2p.
This set of tables are then fed to the classifier. When the classifier is given
attribute values for a IP source, it simply uses Bayes theorem above to compute
the likelihood of the IP source being p2p or nominal. The tables provide the
conditional probabilities needed in the Bayes formula. It is therefore easy to
see why the classifier works very fast.

We note that the above approach requires p2p traffic to be unencrypted so
that the oracle can properly classify it (to train the classifier). In section 8 we
discuss a simple extension of the above approach to deal with the case when
all p2p traffic is encrypted.

4 Related work

The presence of p2p traffic in the Internet has been drawing more and more
attention from researchers and network operators in recent years due to the
impact this category of application can have on a network resulting from
significant growth and unreliable profiling. The work in [12] investigated the
behavior of p2p traffic in an attempt to understand its impact on a large ISP
network. The authors note in their work that the data on which their research
was based was captured while the p2p applications could still be found through
the usage of well known port numbers. Conducting the same work in a network
today will not produce accurate results as the p2p applications will not be
utilizing well known ports.

With the loss of port numbers researchers moved towards traffic classification
through application signatures inside the payload. The work described in [11]
created signatures for five different p2p applications and implemented a system
dedicated to p2p classification. The work resulted in false negative ratio of less
than 5% for most protocols (about 10% for bittorrent). A valuable result is
their comparison with port-based classification where significant portions, up
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to 72.6% in one case, of p2p traffic was detected on non-standard ports. Traffic
classification using application signatures [11] will only work while we, (1) have
reliable signatures for most p2p applications, and (2) the p2p applications do
not utilize any encryption. Both cases are expected to disappear in the near
future and thus traffic classification needs to be performed without relying on
the port numbers and without access to the payloads transmitted between hosts.

The authors of [6] manually created unique heuristics for p2p detection using
domain knowledge of transport protocol characteristics and connection pat-
terns. Enhancements to these heuristics can be found in [7] where the hosts,
rather than their flows, are explored for their behavior on social, functional,
and application levels in order to classify hosts’ participation in one of several
traffic categories - one of which is p2p. Our solution determined the attributes
relevant to p2p application identification through automation. Although do-
main knowledge was initially applied to create these attributes the decision
about their relevance to application detection was determined automatically -
no knowledge of p2p behavior was required. We support the authors’ conclu-
sion in [7] that it is more intuitive to perform host based classification - where
an application is associated with a host - rather than flow based classification.
In our solution the path from the actual network traffic through the summa-
rizer to the classifier is clear. With this architecture our traffic classification
can be performed real-time at the network border. This path is not presented
in [7] as the classifications are performed on batches of flow data collected
from several devices in the network. Motivated by the real-time nature of our
setup we maintain minimum state. Our solution does not keep a history of pre-
vious classifications in order to direct current classifications. A characteristic
related to the goal of minimum state is that our solution very early “forgets”
flow data by summarizing this information to form a general picture of host
behavior. The classifier never sees individual flow data and thus performs the
classification on significantly less data resulting in potential speed increases
for real-time classification. The authors of [7] reported that the system could
classify 98% of the p2p instances with an accuracy of 82%. Values for prob-
ability of detection and probability of false positive data were not reported.
The values quoted are for the case where hosts have to participate in at least
one flow. This is the case of interest in our work as we would like to detect
instances of p2p participation as it occurs on the network. Our solution was
able to achieve an accuracy of 93% in the classification of local IP sources. A
comparison of execution speeds between the solution in [7] and ours have not
been performed as the former is not publicly available.

In parallel to heuristic based traffic classification the research community also
explores machine-learning approaches. A Naive Bayes estimator is used in [9]
to classify traffic into ten different categories - one of which is p2p. The authors
report results from two testing datasets and show trust values (probability
of detection) of 36.45% and 55.18% respectively. This work addresses flow
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classification and is different from our technique of host classification. We
summarize all flow data into a general picture of host behavior and perform
traffic classification by examining this host data. While our work is also in
the machine learning domain we utilize current research in order to create a
solution that can perform real-time classification on live data. The classifier
in [9] requires the entire dataset to be in memory implying that the classifier
can never be used on real-time data or on very large data sets. A noteworthy
result from the work in [9] is the performance of the system after attribute
selection has been completed. Using the most relevant attributes the system
was able to achieve a probability of detection of 36.45% on one testing dataset
and 55.18% on another. These variations is a motivation for more attention and
will be explored in Section 6.3. Our solution was able to achieve an accuracy of
93% (probability of detection of 79.5%) in the classification of local IP sources
using datasets that were collected nine months apart.

A technology that is very promising (and also related to an aspect of the
work in [7]) is the usage of communities of interest to identify the interacting
hosts of a p2p network [4]. Statistical clustering ( [5]), where connections are
grouped into traffic classes that represent similar communication patterns, and
statistical signature based classification using the nearest neighbor and linear
discriminant analysis techniques [10] is also addressing the topic of traffic
classification without application data.

5 Attributes Used

In order to distinguish p2p traffic from all the other traffic in the network, we
need attributes that can, individually or in combinations, discriminate between
different traffic types. Several different attributes are used in this study and
the selection of these attributes is driven by empirical observation of their
effectiveness as well as an intuitive understanding of how the attributes may
distinguish between different traffic types. We divide the attributes into two
categories – basic network control attributes and attributes that are composed
of basic network control data. These attributes are measured from the point
of view of an individual IP host over some period of time.

5.1 Basic network control attributes

(1) SYN: number of TCP SYN segments sent. A large number of SYNs from
an IP source typically indicates a scanner.

(2) SYNACK: number of TCP segments sent with both the SYN and ACK
flag set. IP sources sending these packets tend to be servers. However, an
abnormally high value may indicate a SYNACK attack.
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(3) FIN & FINSENT: number of TCP FIN segments received/sent.
(4) RESET: number of TCP RESET segments received.
(5) TCPSENT & TCPRCV: number of TCP segments sent/received. This

number is higher for servers as well as for p2p applications and is thus a
useful discriminator.

(6) ICMP: number of ICMP errors received.

5.2 Composed attributes

We noticed that the simple (first order) attributes described above were not al-
ways able to distinguish between p2p applications and servers (e.g., TCPSENT
and TCPRCV are high for both) or between p2p and scanners (e.g., if a p2p
client has an out-of-date cache of peer IP addresses it may behave similar to
a scanner). We developed the following composed attributes that are better
at classifying traffic.

(1) WORK: the work weight, the ratio of TCP control packets to all TCP
packets sent and received for an IP source. That is,

SY N + FIN + RESET

TCPSENT + TCPRCV

expressed as a percentage. 100% means more or less all control and no
data. Obviously a web or ftp client system downloading a CD would tend
to a work weight of 0. From experience we suggest that work weights
above 50% should be deemed highly suspicious and are often worms or
scanners. However there are rare cases of noisy clients that for some rea-
son cannot reach their server or email servers that are trying to reply
to spam (which will always fail). Low but non-zero work weights are of-
ten associated with p2p applications presumably because there are many
TCP connections with less data download per connection when compared
to conventional web and ftp downloads.

Although false positives are possible, we have observed the following
about the WORK attribute:
• a system with a high work weight may very well be a syn scanner, or

worm (a black hat flow), especially if there is a large number of syns
per period, and very few or no fins.

• p2p applications like gnutella, kazaa, bittorrent, and edonkey/emule,
sampled over millions of packets have average work weights as follows:
gnutella: 30%, kazaa, 20%, bittorrent, and edonkey, less than 5%. It is
possible that a badly behaved gnutella app in particular may have a
high work weight (above 50%). This is because the gnutella application
is failing to find any gnutella peers and thus behaves like a scanner.
However p2p applications rarely score above 50%.
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• Some layer 7 attacks will have lower work weights simply because 2-way
data exchange is occurring. For example this is typical of password-
based login attacks (with 1433 SQL servers as one form).

• In general work weights cluster around high values or low values. Values
in the middle are less common.

(2) SAS: ratio of SYNACK segments to SYN segments sent by an IP source.
That is,

SY NACK

SY N

expressed as a percentage. This measure is similar to the functional role
attribute introduced in [7].

The SAS field expresses the total percent (0..100) of SYNACK packets
typically sent as the second packet of the TCP 3-way initial handshake
divided by the total number of SYN packets sent from the IP source in
question. There are three possible thresholds here. 0 means the system in
question is likely a client (or a scanner). 100 means the system in question
is likely a server. A number in between (which is commonly found with
p2p systems) shows that the system in question has both server and client
functionality. One interesting facet of this field is that occasionally one
will see a work weight of 100% and an SAS value of 100%. This means
that the host in question is performing SYNACK scanning.

(3) L3COUNT: the number of unique destination IP addresses. Knowledge
about how many different hosts a source communicates with is important
in understanding its behavior in the network. This attribute is similar to
the popularity explored in [7].

(4) L4COUNT: the number of unique destination ports.
(5) E : takes a value of yes or no and indicates Errors as a quadratic weight.

The attribute is set to yes if (SY N − FIN) ∗ (ICMP + RESET ) >
100000. Intuitively, this flag indicates that the IP source was causing
errors. Thus, this value is maximized if SYN > FIN and the sum of the
number of resets and icmp errors is high.

(6) R : takes a value of yes or no and is set to yes if (FIN == 0)AND(RESET >
5). This is an indication that an unexpectedly large number of resets are
returned. This will occur if a host attempts to connect to ports that do
not have any services listening.

(7) O : takes a value of yes or no and is set to yes if (SY N > 20)AND(FIN <
5). It is an indication of too few (or none) FIN segments.

(8) M : takes a value of yes or no and is set to yes if no data TCP packets
are returned to the IP source.

(9) W: takes a value of w if the work weight is between 50 - 90%, takes a value
of W if the work weight is greater than 90%. Note that this attribute is
highly correlated with the work weight and as a consequence was not
used in our machine learning.
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5.3 Rationale for various attributes

To explain the application of the attributes, we present summaries of data
collected over 2000 30-second sample periods in Tables 2, 3, 4, and 5. The
source IP addresses have been anonymized. WORK denotes work weight (the
three values shown represent the min, average, and max) and flags denote
which of the E, R, O, M attributes take a yes value. The w or W flag is set
if the work weight attribute takes a value of between 50% – 90% or is above
90% respectively. The apps field indicates the application seen as determined
by running our oracle (Figure 1).

IP src flags apps WORK SAS L3COUNT/ SYN/FIN/RESET TCPSENT/

(min/avg/max) L4COUNT TCPRCV

netW.1 H 0/0/3 100 22/53 40/38/0 20382/10723

netW.1 O H 1/9/25 100 22/105 98/93/0 1105/880

netW.1 OR H 0/3/36 99 10/14 10/7/0 936/837

netW.1 H 0/6/16 100 43/51 38/35/0 733/764

netW.1 w H 0/8/50 100 19/164 159/155/0 2122/1777

H – web server based on source port (80/443)
Table 2
Campus web servers.

Table 2 shows the values taken by different attributes for web server traffic.
The value of SAS tends to be close to 100% in all cases and this attribute
is thus a good determinant of this type of traffic. On the other hand, SAS is
low for email servers as shown in Table 3. This is because email servers can
perform many email client connections to other email servers. In the case of
both email and web servers, the work weight is typically small although there
are periods with email servers where all connections will fail (due to spam or
lack of availability of a peer).

IP src flags apps WORK SAS L3COUNT/ SYN/FIN/RESET TCPSENT/

(min/avg/max) L4COUNT TCPRCV

netE.1 WORM IE 0/12/100 4 13/2 14/8/0 183/153

netE.2 WOM IE 0/13/100 3 13/2 15/9/0 187/155

I – irc, E – email based on destination port
Table 3
Campus email servers.

Table 4 shows the signature left by scanners. The average work weight tends to
be pretty high (between 76% and 94%). This is because there are a great many
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syns being sent by the scanners but few packets are returned. The TCPSENT
value is almost equal to the number of syns because each syn is counted in
TCPSENT as well. The SAS attribute is zero because the attackers are only
sending syns. We also note that in all the cases two or more flags from the set
E, W, O, R, M are set which is another indicator of a malicious application.

IP src flags apps WORK SAS L3COUNT/ SYN/FIN/RESET TCPSENT/

(min/avg/max) L4COUNT TCPRCV

netS.2 EWOR I 25/77/97 0 552/5 1101/25/7 1332/221

netS.3 EWORM IH 44/94/100 0 643/2 1748/12/33 1838/107

netS.5 EWO IH 20/88/95 0 1040/2 2181/28/33 2394/264

netS.6 WO I 22/81/94 0 417/2 809/15/33 944/138

I – irc, H – web server based on source port (80/443)
Table 4
Scanners.

Table 5 shows a sample of data for p2p applications and irc. The p2p ap-
plications we show include bittorrent, morpheus, edonkey and gnutella. We
observe that the work weight is small for p2p as well as irc. However, the SAS
is variable for p2p while it remains small for irc. If we examine the values of
work weight and SAS for irc and email servers, we see that both these values
are small for both applications. However, if we also examine the values for
TCPSENT/TCPRCV (i.e., number of TCP segments sent and received) we
see a significant difference. The irc sources have very small values as compared
to p2p hosts. This is because irc generates very little traffic in general.

Based on the discussion above, we can have a rough scheme for classifying
traffic as follows:

WORK SAS TCPSENT/TCPRCV

web server small large very large

mail server small small intermediate

scanners large small large

irc small small small

p2p small variable large

However, on closer examination of the data, it is easy to see that using this
table we will typically not be able to uniquely determine the type of applica-
tion that is running in many cases. This is the reason to include additional
attributes as those discussed previously. Indeed, since the relationship be-
tween attribute values and application are quite complex, we decided to use a
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flags apps WORK SAS L3COUNT/
L4COUNT

TCPSENT/
TCPRCV

() G 11 0 159/47 587/513

() B 0 90 64/62 4136/291

() B 0 100 86/84 42471/346

() I 0 0 2/1 5/5

() IH 18 0 2/7 16/28

() B 0 20 120/119 4769/587

() M 0 0 4/2 142/249

() B 0 0 76/39 1044/101

() G 22 0 49/24 326/292

() e 9 21 119/59 632/546

() GM 3 0 352/42 1732/264

I – irc B – bittorrent G – gnutella e – edonkey

M – morpheus H – web server source port (80/443)
Table 5
Predominantly p2p traffic.

Bayesian approach rather than a decision-tree based approach.

6 Evaluation of the algorithm

This section examines, in detail, the performance of the classifier that is pro-
duced using the approach outlined in Figure 1. The performance of the real-
time version of the classifier is then studied in section 7. The specific questions
we answer in this section are the following: what is the accuracy of classifi-
cation? In the event that a IP source is misclassified, what are the possible
reasons? How well or how poorly do different attributes perform in the classi-
fication task? Is there a difference between classifying local versus remote IP
sources? And finally, but most importantly, how often do we need to retrain
the classifier?

The method we adopt to answer the questions is to collect several data sets
and use some of these for training and others for testing the classifier. Since
our goal in this section is only to examine properties of the algorithm, we run
the classifier on entire data sets rather than running it in real-time. Our data
collection took place at two different times. In Jan 2005 on two different days,
we collected 18 datasets consisting of 10 million packets each from the edge
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of our campus network. Each capture took 5 minutes on average and analysis
showed approximately 30000 unique IP sources communicating during this
time. The datasets are labeled “A” to “R”. In October 2005 we collected an
additional 5 data sets labeled “S” to “W”. These datasets can be obtained
from [2]. The first 18 data sets were used for both training by the learner to
produce the tables for the classifier as well as for testing the classifier. The
same classifier (unchanged) was then used on the new 5 data sets and we note
that 10 months after being trained, the classifier still approached very high
accuracy in traffic classification.

The data captured at the edge of the network enables us to view all traffic to
and from our campus network. The data thus contains information profiling
all internal hosts’s Internet communication as well as external hosts commu-
nicating with hosts on our network. With the profiling of an IP source we can
expect to capture the general behavior of internal IP sources with more accu-
racy than the external IP sources seen communicating with our hosts - simply
because we are not seeing all the external hosts’ communication and thus have
more data about internal hosts than external hosts. With this reasoning it is
expected that p2p classification will be more accurate for internal hosts than
external hosts. This section examines this theory by first training and testing
a solution of p2p detection by considering all IP sources in Section 6.1 and
comparing these results with a solution that only considers local IP sources
in 6.2.

Another topic we investigate is the quality of the attributes. We rely on a
Naive Bayes learner and its operation can be damaged through the usage
of redundant attributes which tend to add noise. In Section 6.3 we utilize a
wrapper method with greedy forward selection [14, p.233] to search for rele-
vant attributes and then re-test the performance of our algorithm using only
these attributes. After the above studies, in Section 6.4 we examine the qual-
ity of our classification for different p2p applications. We observe that some
p2p applications can be detected with higher probability than others and we
speculate as to the possible reasons. Finally, in Section 6.5 we run the classifier
on five new data sets collected ten months after the classifier was trained. We
examine the accuracy of the classification as well as the execution speed. The
conclusion is that the classifier is still very accurate and can run at a speed
that allows near real-time classification.

6.1 All IP sources all attributes

We first explore the accuracy of our solution when it is presented with all
(summarized) data available from the edge of the network. The training and
testing data contains all attributes (except the “w/W” flags) described in Sec-
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tion 5 for all IP sources in the datasets (“A” to “R”). In order to increase our
confidence in the results obtained we used a method of cross-validation during
the training and testing of our learner. We performed 18 experiments, each
experiment used one dataset for testing and a concatenation of the remain-
ing datasets for training. The results from these experiments are presented
in Figure 2 with the x-axis showing which dataset was used for testing. Our
experiments reported an average probability of detection of 64% and average
probability of false positive of 20%. These values result in an average accuracy
of 76.5% (see Table 1).
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Fig. 2. p2p detection considering all IP sources

6.2 Local IP sources all attributes

The results from Section 6.1 show us that our suspicion of insufficient data for
remote IP sources may be true. Our next experiment follows the same script
as the previous, but only considered data for local IP sources (we discarded
entries in the 18 datasets for non-local IP sources). Figure 3 presents the results
from these experiments. The probability of detection improved significantly to
an average of 76%, so did the probability of false positives (to an average of
12%). The average accuracy improved to 86.3%.

6.3 Attribute selection

Experience with the above experiments leads to the next conjecture that the
accuracy can be improved by considering only the most relevant attributes
rather than all the attributes. To test this conjecture, we implemented a
wrapper method with greedy forward selection to eliminate redundant and
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Fig. 3. p2p detection considering local IP sources

irrelevant attributes. That is, we start with no attributes and add them one
at a time, each time presenting the new data to our solution of p2p detection.
In each round the best performing attribute (based on probability of detection
value) is carried over to the next round. In this way we iteratively find the best
performing attribute, the best two performing attributes, the best three per-
forming attributes, etc. To increase our confidence in our results we performed
the attribute selection 18 times by creating the training and testing dataset in
the same way as the experiments described in Sections 6.1 and 6.2. We tallied
the order of attribute selection in each experiment and scored attributes to
reflect how early they were selected by the method - lowest score means ear-
lier selection. This new ranking across experiments provided us with the most
relevant attributes. Table 6 presents the detailed results from our wrapper
runs by showing the order in which the attributes were selected during each
test run for local IP sources only. The table only shows the results for the
top-5 attributes and the high numbers in the table thus show how many other
attributes were selected before a particular attribute in a test run. It can be
seen that the attribute selection showed significant variance during attribute
selection (except for the top three attributes).

The overall results from the attribute selection are (from most relevant to
least): TCPSENT, L4COUNT, TCPRCV, ICMP, WORK, FIN, R, M, FIN-
SENT, SYN, E, O, SYNACK, RESET, L3COUNT, and SAS. A reflection on
this selection does seem appropriate. We are searching for p2p applications
that are typically used for large file transfers - an IP source typically receives
and transmits large amounts of data during such a session. This supports the
selection of the TCPSENT and TCPRCV attributes. p2p applications are also
known to be unique in their connection patterns when examining the ratio of
distinct IP addresses to distinct port numbers as these numbers tend to be
equal, see [6] and [7], this property can be captured by L4COUNT. Hosts par-
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Attribute Dataset used for testing Average

A B C D E F G H I J K L M N O P Q R

TCPSENT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L4COUNT 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.06

TCPRCV 2 3 6 7 3 14 3 3 3 3 3 4 3 3 3 3 3 3 4

ICMP 5 6 10 8 10 8 6 7 6 7 5 8 8 9 9 4 6 8 7.2

WORK 4 13 13 15 15 6 11 5 5 6 11 6 6 6 5 9 4 4 8
Table 6
Wrapper attribute selection for local IP sources.

ticipating in p2p networks are also known to frequently join and disconnect
from the p2p network, this will result in other hosts attempting to connect
to them receiving failures and generally have an increased work weight as it
searches for connected peers. Thus the usefulness of the ICMP and WORK
attributes.

In order to see how the probability of detection changes with the use of dif-
ferent numbers of attributes, in Figure 4 we plot the probability of detection
of p2p applications as a function of the attributes used for six representative
data sets (A, D, E, K, O, P). We start with the most significant attribute
TCPSENT and then add L4COUNT and then add TCPRECV, and so on.
The data shows that there is little point in selecting more than the top five
attributes as we see little change in the probability of detection. Table 7 shows
the raw data used for the plot for one of the samples. We see that the prob-
ability of detection increases to 0.78 with the top five attributes and then it
drops slightly as we add more attributes. Similar patterns are seen in other
samples.
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Fig. 4. Ranking of the attributes for local IP sources.
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pd pf Attributes

0.574713 0.0343535 TCPSENT

0.735632 0.0718301 above + L4COUNT

0.747126 0.0730793 above + TCPRCV

0.747126 0.0730793 above + ICMP

0.787356 0.0780762 above + WORK

0.770115 0.0886946 above + FIN

0.770115 0.0886946 above + R

0.775862 0.0905684 above + M

0.787356 0.129919 above + FINSENT

0.764368 0.148032 above + SYN

0.764368 0.146159 above + E

0.764368 0.146159 above + O

0.764368 0.126796 above + SYNACK

0.758621 0.123673 above + RESET

0.764368 0.136165 above + L3COUNT

0.747126 0.117427 all attributes
Table 7
Change in probability of detection as we use more attributes for one data sample
(A) for local IP sources only.

6.3.1 Using only the Top-5 attributes

We next explore how well the top attributes do in detecting the presence
of p2p applications. We first repeat the experiments from Section 6.2 but
only use the top-5 attributes: TCPSENT, L4COUNT, TCPRCV, ICMP, and
WORK. The results from these experiments are presented in Figure 5 for
local IP sources. As is clear, the usage of the top five attributes significantly
improves the probability of false positives, the average is now a very low 7.8%.
The average probability of detection did drop slightly to 75%. The average
accuracy however improved significantly to 90.4%

We next repeat the experiments of Section 6.1 (i.e., all IP sources) but only
using the top five attributes as above. Unlike the case with local IP sources,
the probability of detection decreases from 64% (using all attributes) to only
48% (using the five attributes from above). However, the probability of false
positives also decreases from 20% to 14.7% which actually improves the overall
accuracy from 76.5% to 77.98%. Figure 6 plots the probability of detection
and probability of false positives for this case. Even though the accuracy has
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Fig. 5. p2p detection considering local IP sources - top-5 attributes

improved, we believe that using the top-5 attributes selected by applying the
wrapper method to local IP source data only is problematic. Thus, we now
repeat the wrapper algorithm for all 18 data sets considering all IP sources.
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Fig. 6. p2p detection considering all IP sources - top-5 attributes

6.3.2 All IP sources top-8 attributes

When we run the wrapper algorithm considering all IP sources, we get a
different ranking of the top attributes as indicated in Table 8 (to save space,
this table only contains data corresponding to the first and last columns of
the similar Table 6). Unlike in the case with only local IP sources, the work
attribute is the most significant. Figure 7 plots the probability of detection of
p2p applications as a function of the attributes (as was done for Figure 4).
We see that the probability of detection continues to increase until we pick 8
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Fig. 7. Ranking of the attributes for all IP sources.
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Fig. 8. p2p detection for all IP sources using top-8 attributes.

attributes after which it remains fairly constant. Therefore, for the case when
we look at all IP sources, we consider the top-8 attributes and the results we
obtain are as follows (see Figure 8): the average probability of detection is
now 63% with a probability of false positives of 22% resulting in an overall
accuracy of 75%. These numbers are almost identical to the case when we use
all the 16 attributes (Section 6.1) which means that we can improve the speed
of classification (using fewer attributes) without affecting accuracy. Table 9
summarizes the performance of our algorithm on the 18 datasets. In general
we see that accuracy is better than 75% for all IP sources and better than 85%
for local IP sources. The table also shows the accuracy for various selections
of top attributes.

As with the previous attribute selection we consider the knowledge gained from
the attribute selection. Of the top-5 attributes selected using datasets only
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Attribute Average

WORK 1

SYN 2.82

TCPSENT 4.36

FIN 5

TCPRCV 5.09

R 5.73

FINSENT 6.36

M 7.73
Table 8
Wrapper attribute selection for all IP sources.

containing local IP sources we note that L4COUNT stands out as not being as
significant during attribute selection when using all IP sources. This is intuitive
when viewed in the context of the amount of information we have about IP
sources. We have full information about local IP sources participating in p2p
networks. Connections from these hosts are to several destinations (local and
remote) and each connection typically occurs to a distinct destination port.
This connectivity is captured by the value of L4COUNT. When we are dealing
with a remote IP source that participates in a p2p network then we cannot view
its full connectivity to other p2p peers (assuming that most of its peers are not
located in our network) and the L4COUNT is thus not as significant. When
dealing with remote IP sources that participate in p2p networks the top-8
attributes appear to capture two distinct cases: when a remote IP source is able
to find a p2p peer in our network or not. The significance of SYN, TCPSENT,
FIN, TCPRCV, and FINSENT match well to successful connections (and large
data transfers) between local and remote p2p network peers. The significance
of WORK, R, and M indicates the error rates experienced by remote IP sources
as they attempt (and fail) to connect to local p2p hosts. The remote hosts
failed attempts to connect is apparent through the significance of the amount
of control data they send (WORK) and how the local IP sources respond by
sending resets or not answering at all - as is evident through the significance
of the R and M flags.

6.4 Detecting specific p2p applications

In this section we ask the following question, ’given a particular p2p applica-
tion, how well does our method perform at detecting it?’. The results in the
previous sections simply lumped together the probability of detection for all
p2p applications. However, if some applications are easier to detect and occur
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Experiment pd pf average accuracy

All IP sources, all attributes 64% 20% 76.5%

Local IP sources, all attributes 76% 12% 86.3%

Wrapper method applied to local IP sources only

All IP sources, top-5 attributes 48.2% 14.7% 77.98%

Local IP sources, top-5 attributes 75% 7.8% 90.4%

Wrapper method applied to all IP sources

All IP sources, top-8 attributes 63% 22% 75%
Table 9
Summary of p2p classification performance for the original 18 datasets

more often then this probability will be higher as compared to the case when
the more frequent p2p applications are harder to detect. Table 10 presents
the detection behavior of our approach considering only local IP sources. Re-
call from Table 1 that d indicates that the oracle and our detector agree that
the application is p2p whereas b indicates the case when the oracle says p2p
but our detector misclassifies the source. The last column in Table 10 is the
probability of detection computed as the ratio d

b+d
. The last row of the table

gives us a probability of detection of 80% while the results from Section 6.3
reported a probability of detection of 75%. The difference in these two num-
bers comes about as follows. The 75% value resulted from a d value of 2499
and a b value of 845 giving us PD = 2499

2499+845
= 75%. The training and testing

data used in Section 6.3 only considers the classification of a host: whether it
is running a p2p application or not. In our initial classification by the oracles
we found that hosts very often run more than one p2p application. For the
previous experiments this was not a concern as these cases will cause a host
to carry the encompassing classification of “p2p”. Multiple p2p applications
on a host does become important now that we are considering individual p2p
applications. A close look at the data from Section 6.3 (3344 hosts running
p2p applications) revealed 4483 instances of p2p applications, thus there were
1139 cases where more than one p2p application was running on a host. Com-
pleting the confusion matrix for these tests resulted in d = 3601 and b = 882.
For individual p2p applications we thus have a probability of detection of 80%.

Returning to Table 10 we note that p2p applications such as bittorrent and
directconnect have a almost 100% probability of detection while edonkey has
a value of only 74%. It is interesting to examine why edonkey has a lower
probability of detection. Figure 9 plots the value of the attribute L4COUNT
as a function of a count of instances 4 . From the point of view of using the

4 In other words, a value (x, y) says that there are x instances when the oracle
flagged p2p for which the value of L4COUNT is y.
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L4COUNT as an attribute for classifying p2p applications, the problem is
evident – this attribute is a poor discriminator for edonkey since the values
for edonkey are spread out widely whereas all the other p2p applications have
values clustered towards the lower values of the x-axis. On the other hand, we
see that the values of this attribute for bittorrent are clustered towards the
lower values of the x-axis as well (the values marked ’o’). The large number of
values marked ’+’ that are spreadout correspond to edonkey (since ’+’ plots
all p2p except bittorrent). We note that very similar graphs are produced for
the other four top-5 attributes.

In examining the raw data in more detail, we observe that the oracle frequently
classifies edonkey with one or more other p2p application. Table 11 provides
the number of times a given p2p application was classified with another p2p
application for one data set only considering local IP sources. Because of the
large number of times edonkey was classified with another p2p application,
we believe that the oracle has difficulty discriminating between edonkey and
other p2p applications. This belief is supported when we compare the regular
expressions implemented in the l7-filter to detect edonkey and bittorrent 5

bittorrent pattern:

^\x13bittorrent protocol

edonkey pattern:

^[\xe3\xc5\xe5\xd4].?.?.?.?([\x01\x02\x05\x14

\x15\x16\x18\x19\x1a\x1b\x1c\x20\x21\x32\x33

\x34\x35\x36\x38\x40\x41\x42\x43\x46\x47\x48

\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53

\x54\x55\x56\x57\x58\x5b\x5c\x60\x81\x82\x90

\x91\x93\x96\x97\x98\x99\x9a\x9b\x9c\x9e\xa0

\xa1\xa2\xa3\xa4]|\x59................?[ -~]

|\x96....$)

Indeed, it is likely that conditions which make the edonkey expression true
have a high probability of making another regular expression true as well.
We therefore believe that the oracle frequently overestimates the number of
edonkey instances which results in our learner being misinformed which in turn
leads to a somewhat lower probability of detection of all p2p instances. Put
another way, our classifier is underperforming because the oracle is not entirely
accurate in identifying edonkey (though it is very accurate in detecting the
other applications). Finally, we note that the difficulty of properly classifying

5 \x <value> – refers to a hex number in value, the caret character refers to the
start of a line, [...] indicates a class and the pattern matches any of the members, ?
means match at most once, and a period means any character.
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p2p application b d PD

100bao,applejuice,ares 0 0 0

gnucleuslan,goboogy,hotline

napster,poco,soribada,tesla

bittorrent 13 884 99%

directconnect 0 21 100%

edonkey 736 2045 74%

fasttrack 4 14 78%

(includes kazaa and morpheus)

gnutella 15 115 88%

kugoo 5 36 88%

mute 16 60 79%

openft 0 3 100%

soulseek 93 423 82%

All 882 3601 80%
Table 10
Detection of individual p2p applications

p2p application Multiple count

eDonkey 798

Bittorrent 674

Directconnect 9

Fasttrack 12

Gnutella 85

Kugoo 40

Mute 59

Openfit 3

Soulseek 366
Table 11
Times a p2p application was classified with another.

edonkey has also been discussed elsewhere [13].
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Fig. 9. Behavior of edonkey and bittorrent on L4COUNT.

Experiment pd pf average accuracy Instances Total Time

All IP sources, all attributes 55% 29% 68% 40771 23.7s

All IP sources, top-8 attributes 55% 32% 65% 40771 12.6s

Local IP sources, all attributes 81.5% 10.6% 88.8% 2370 1.43s

Local IP sources, top-5 attributes 79.5% 5.8% 93% 2370 0.5s
Table 12
Measures of p2p classification performance for the 5 new datasets

6.5 Running the classifier on new data

The original 18 traces were collected in January 2005 which were used to
train the classifier. We collected five new data sets in October 2005 and ran
the classifier again (but we did not train the classifier on this new data).
The results of the classification are very encouraging and are summarized in
Table 12. The main conclusions are (1) the classifier works as well as it did
ten months ago which means that frequent training is unimportant (2) the
accuracy of detecting local IP sources improves significantly using only the
top-5 attributes while it decreases a bit when using top-8 attributes for all IP
sources (compared to Table 9), and (3) the benefit of using fewer attributes
is the lower processing time – thus, the slight lowering of accuracy for a 2x
reduction in processing time for all IP sources is a very productive tradeoff.

The classification performance was measured on a 2GHz Intel Pentium ma-
chine with 512MB RAM running Linux kernel 2.6.11. The classifier was imple-
mented as a script in gawk. The classifier iterated ten times over the testing
dataset performing the entire classification process every time and the values
in the table indicates the average speed.
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7 Real-time P2P detection

The experiments described in the previous section performed offline P2P de-
tection since our goal was to understand the algorithm in detail. We now
consider a real-time implementation of the classifier. Unlike signature based
classifiers, our classifier uses statistical attributes to classify IP sources. There-
fore, the question arises, how can we classify an IP source in real-time since
we need statistical data?

The abstract view of the approach we use is to keep a T second history of
traffic already seen and use this history to compute attribute values for each
IP source. Then when we see a next occurrence of such an IP source, we can
update the attribute values and classify it immediately. However, a problem
with this approach is that keeping and using T seconds worth of traffic will
make the implementation very slow. The approach we adopt is therefore to
use attribute summaries of T seconds worth of traffic and to update these
summaries as more traffic is collected. To be clear, these attribute summaries
are computed for the data that is there in the sliding window of length T only.

Our implementation of the real-time classifier is constrained by the frontend
(see Figure 1) which collects and summarizes attributes in 30 second chunks.
Thus, T is a multiple of 30 seconds in our implementation. Let us say T = 30k
seconds. Then for each of the latest k 30 second samples provided by the
frontend, we compute the values of the top-5 attributes for local sources (and
top-8 for remote sources). However, the classifier uses a normalized frequency
table to do the classification. Recall that the classifier was trained on 10 Million
packets and to use it on smaller samples, we need to normalize it. We maintain
state in the classifier. For each IP source we maintain a cumulative count of the
values for its top 5 attributes in window T . When the classifier is presented
with a new 30 second sample it adds the values of the current top attributes
to those recorded from previous samples and then normalizes these over the
total number of 30 second samples seen up to that point. We measured the
performance of our classifier when the summarizer is presented with the 30
second periods of each of the five traffic captures from October 2005.

Figure 10 shows the performance of the classifier for different values of k.
On the x-axis (labeled ’sample’), a value of, say 6, means that we used T =
6 × 30 = 180 seconds. The idea here is to see what value of k represents
a tradeoff between speed and accuracy. From this graph (as well as others
created for the other data sets), it appears that k = 5 works well in terms of
maintaining little state (i.e., attribute values) and high accuracy. From this
we see that the probability of detection and probability of false positive reach
a good balance after seeing about five 30 second samples.
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Figures 11 presents the pd results from these experiments for each of the five
traffic captures in October 2005 (captures named “S” to “W”) using T =
5×30 = 150 seconds. Note that the x-axis starts at 5 because of this selection
of T . We also note that the probability of false positive values were 0.14. The
probability of detection values over two samples, “U” and “V”, do seem lower
than the average but we observed that this is not due to the usage of the sliding
window. Indeed, this appears to be an artifact of the data sets themselves.
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Fig. 10. Real-time p2p detection using 30s samples of traffic capture “S” cumula-
tively
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Fig. 11. p2p detection using sliding window over 30s samples

8 Encrypted p2p traffic

In the approach described thus far, the p2p traffic needs to be unencrypted in
order for the oracle to appropriately train the classifier. This presents a prob-
lem for the future when the expectation is that all p2p traffic will be encrypted.
In order to circumvent this problem, we propose the following modification to
the approach from Figure 1. We introduce a host into the local network and
configure it to run one p2p application and set it running. Data is collected
as described previously for some length of time. Of the data collected, all
the encrypted traffic is discarded with the exception of the encrypted traffic
bearing our host’s IP address in the IP header. This process is repeated for
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all known p2p applications and at the end we concatenate all these doctored
traffic traces together and this now forms the training set. This technique will
thus allow our approach to be used in the future as well. There is however
one caveat: there will be encrypted traffic other than p2p traffic that we are
discarding. It is hard to predict how this will affect the classifier’s performance
since we have no actual figures available today that quantify the percentage
of this form of traffic. However, this is an important research problem that
needs to be addressed in the near future.

9 Discussion and Future work

In this work we have shown that it is possible to detect the presence of p2p
traffic without considering the payload of packets. Tables 9,12 present a sum-
mary of our results. As far as we know this is the highest accuracy, highest
probability of detection, and lowest probability of false positive with which p2p
detection have been accomplished in this domain. The very low probability of
false positives makes this solution particularly attractive to network operators
who rely on these measures for visibility into their network usage. Another im-
portant contribution of this paper is the definition of a rigorous experimental
method that facilitates comparison between new and prior results. We report
accuracy, PD, and PF in cross-validation across multiple public domain data
sets and urge other researchers to do the same. Finally, we have produced a
real-time classifier for p2p traffic that does not require frequent retraining.
Indeed, as our data shows, the classifier continued to have high accuracy 10
months after being trained.
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