
Locality, Network Control and Anomaly Detection

James R. Binkley
Computer Science,

Portland State University
Portland OR, 97201, USA

jrb@cs.pdx.edu

John McHugh
Cylab, Carnegie Mellon University

Pittsburgh, PA 15313, USA
jmchugh@cert.org

Carrie Gates
Dalhousie University Halifax, NS, CA

gates@cs.dal.ca

January 17, 2005

Abstract

Ourmon is a near real-time network monitoring and
anomaly detection system that captures packets using
port-mirroring on Ethernet switches. It primarily displays
data via web graphics using either RRDTOOL stripcharts
or via histograms for top talker style graphs. We have
developed a theory that network scanning launched pri-
marily by worm programs including TCP and UDP scan-
ners may be caught by monitoring network control data
including TCP control packets (SYNS, FINS, RESETS)
and ICMP errors, or by monitoring certain carefully cho-
sen metadata such as the flow count itself. In this paper
we concentrate on TCP and present a ”flow tuple” focused
on TCP control data along with some new metrics and a
novel reporting scheme called a port signature report. We
illustrate our ideas with examples of attacks as shown by
the Ourmon system, and relate those examples to our con-
trol theory ideas.

1 Introduction

Recently John McHugh and Carrie Gates at CERT [7]
have presented a theory of anomaly detection based on
locality. Multiscale locality has proven to be a key to
understanding a wide variety of physical and other phe-

nomena. Locality of program counter and data references
turned out to be the key to the design of effective memory
paging systems [2]. In this case, the key locality concept
is the “working set,” a set of memory pages that if main-
tained in the physical memory of the computer will allow
the program in execution to make progress without ex-
cessive page faulting. This work was in response to the
observation that on some time sharing computers, page
faults occurred so frequently that the CPU was mostly
idle, waiting for pages containing the next data or instruc-
tions to be referenced to be loaded into memory. This
phenomenon, termed thrashing, led to a variety of models
of program behavior, the understanding of which allowed
efficient implementation of paged memory systems.

The thesis of the earlier paper was that locality princi-
ples are a key to distinguishing and understanding “nor-
mal” behavior in computer systems that may be subject
to attack by outsiders. We feel that an understanding of
normal is an important step towards understanding that
portion of abnormal behavior that represents the actions
of malicious users of the system. Our long term goal is
to develop a sufficient understanding of the systems with
which we work so that we can identify properties that are
necessary parts of certain malicious activities, and, with
luck, properties that are sufficient to indicate such activi-
ties.

In general, locality is manifest when the behavior of the

1

system can be represented by relatively compact clusters
in some dimensions of a multidimensional measurement
space. Note that we have not used the terms “benign” and
“malicious” as surrogates for normal and abnormal. In
this context, abnormal means unusual. In some cases, as
we attempt to understand why locality appears to charac-
terize normal behavior, we may be able to make a case that
certain classes of malicious behavior are necessarily ab-
normal in that they will necessarily fail to meet the “nor-
mal” clustering criteria. On the other hand, we may not
be able to identify such behavior with absolute certainty.

In network terms, one may baseline local network data,
especially control data, and consequently observe signifi-
cant anomalies in a baseline, thus detecting that network
attacks are occuring. Furthermore, this principle of lo-
cality is something that can be built into network-based
anomaly detection systems. Locality is represented in
terms of network address clustering, in the temporal be-
havior of sources both internal and external to the net-
work, and in making careful distinctions between normal
amounts of control packets, and anomalous amounts of
control packets. Ourmon, the subject of this paper, is an-
other lens through which we can perceive manifestations
of locality.

Ourmon [8] is a network monitoring system that is
somewhat akin to systems like SNMP RMON [17] in that
it attempts to capture network data including top talker
graphs of traditional flows, packet counts, and counts of
general protocol data including TCP versus UDP traffic,
etc. It runs in thirty second sample periods using various
filters that in general capture integer counts or top talker
tuple lists. Ourmon is divided up architecturally into two
programs, a front-end and a back-end. The front-end uses
some hardwired and some user-defined filters for captur-
ing data and placing condensed and summarized data in
a few small ASCII files. These files are then passed at
the sample period time to the back-end which graphs the
data on the web or analyzes it in reports. Thus Our-
mon is a near real-time system, as the worst case delay
in front-end to back-end processing is never more than
one minute. In this paper we will mostly focus on Our-
mon’s TCP-oriented anomaly detection capabilities. (For
more Ourmon architectural details, please see: http:
//ourmon.cat.pdx.edu/ourmon/info.html).

Ourmon has two fundamental techniques for displaying
data on the web in a graphical fashion:

1. RRDTOOL [10] stripcharts based on integer coun-
ters. Ourmon uses RRDTOOL to construct graphs
based on various individual integer counters. The
filter mechanism here is typically based on a user-
programmable technique where multiple Berkeley
Packet Filter (BPF) [6] expressions can be grouped
in a single RRDTOOL graph. This is a major graphi-
cal tool in the Ourmon system and is often useful for
looking at network-wide information and metadata.
For example, we use it to graph the total numbers of
TCP control packets in our network. See Figure 1
for an example of an BPF/RRDTOOL graph.

2. Top talker lists of information presented as his-
tograms or reports. Top talker lists typically have
some form of tuple associated with them that is ei-
ther keyed on an individual IP source address or on
the traditional IP flow tuple of (IP source, IP desti-
nation, IP protocol, L4 source port, L4 destination
port). Ourmon has numerous instances of such tu-
ples including conventional flow tuples, and control
count tuples such as the SYN tuple discussed below.
See Figure 2 for an example.

At PSU, during Fall 2003 we noticed that the total
count of ICMP flows, which was not graphed at that time,
had increased from 100’s of flows to over 100000 flows
per sample period (30 seconds). Students had returned
from summer break and had brought a mass infection of
the Welchia/NACHI worm [15] back to campus. This
particular worm includes a ping scanner to scan for ad-
ditional IP addresses, thus many such worms raised the
overall ICMP flow count. It should be noted that this was
a case of no particular host standing out by itself in terms
of network traffic. What stood out was the increase in
network-wide traffic for ICMP.

Of course, this is an excellent example of the princi-
ple of locality. We knew that ICMP flows at PSU were
typically on the order of 100’s per period and should not
be 100000 per sample period. We were also alerted to a
network-wide anomaly, not just an anomaly for a single
host. This particular incident caused us to begin our re-
cent work to steer Ourmon in the direction of becoming
an anomaly detection system as well as a general network
monitoring system. It also led us to propose two net-
work anomaly system design principles that we believe

2

are of general importance and have found to be profitable
in our attempts to capture network intrusions both from
a network-wide and per source IP host perspective. The
two principles are as follows:

1. In anomaly detection, it is useful to focus on net-
work control data. Intuitively there should be fewer
control packets than data packets, and errors are sig-
nificant. For TCP this means SYNS, FINS, and RE-
SETS as well as ICMP errors. For UDP this princi-
pally means ICMP port unreachables although other
ICMP errors are useful as well. As an example, we
have a top talker mechanism that captures TCP SYN
attacks and a BPF graph that shows network-wide
counts of TCP SYNS, FINS, and RESETS. In gen-
eral, we can use our BPF/RRDTOOL mechanism to
graph network-wide behavior, and use various top tu-
ples to look at the behavior of individual IP sources.

2. Carefully chosen metadata may also be of use for
anomaly detection. For example, we originallychose
to show the largest top talker IP flows as this is a
very conventional way to display flow information.
As it turns out, we should also have been graph-
ing the number of flows (as seen below in figure
3). In the previous category we mentioned top talker
SYN counting for individual IP sources. We also de-
veloped an additional metadata grapher that simply
counts the total number of suspicious systems send-
ing many TCP SYNS, where we arbitrary declare
that a certain number of SYNS - FINS per count pe-
riod is ”interesting”. As a result, we have observed
what appear to be coordinated SYN scanning sweeps
that originate from many IP sources at a time. This
is shown in figure 4.

We should point out that Ourmon at PSU is deployed
in our DMZ. Our university has around 26000 students.
We use Ourmon to look at our external Internet traffic
for a network with over 5000 hosts on it, 300+ Ethernet
switches, and 10 routers plus external connections to In-
ternet1 and Internet2. All the graphs presented here come
from our central DMZ monitoring station.

Our paper is organized around recently developed
anomaly detection mechanisms based on the general lo-
cality theory. We illustrate these mechanisms with graphs
based on various attacks. We neglect UDP and ICMP in

favor of TCP due to space limitations. In section 2 we will
look at TCP-based mechanisms that illustrate our control
theory notion. In section 3 we look at some metadata ex-
amples including our worm counting mechanism. In sec-
tion 4 we look at validation work coupled with the port
signature report. In the last sections we present related
work, and our conclusions.

2 TCP Anomaly Detection

In this section, we are going to look at two filter mech-
anisms that are both focused on TCP anomaly detection.
We begin with Figure 1, where we show a daily (last 30
hours) picture using three BPF expressions in a RRD-
TOOL stripchart. This picture shows the total TCP SYN,
FIN, and RESET packet counts for PSU traffic to and
from the Internet for a period slightly over thirty hours.
As usual with RRDTOOL graphs, ”now” (10:00 AM) is
on the right hand side. The stripchart moves to the left ev-
ery thirty seconds. The top curve is the number of SYNs
and the size of this curve has basically suppressed the FIN
and RESET count lines, barring a small 6:00 am spike in
the RESET line. Clearly the spikes in the SYN line indi-
cate one set of major anomalies.

These attacks were caused by large-scale SYN attacks
coming from the Internet into PSU during the time period.
(We believe these attacks are distributed and coordinated
SYN attacks that are looking for exploitable Microsoft
systems). At the bottom the graph shows that the varia-
tion in average SYNs to maximum SYNS was about 1 to
3. In other words a single attack could nearly triple the
number of incoming SYNS. From experience we know
that PSU’s overall traffic is typically diurnal with peaks in
the early afternoon. This graph makes a strong suggestion
that the number of SYNS during the entire period at PSU
is too high, and that the network is seeing a fair number
of TCP SYN scans. One might expect that the number
of SYNS and FINS would somehow march together even
if there were less FINS. Of course, long-term baselining
can help resolve this issue, but as this graph is new no
such baseline currently exists. We should also point out
that the distributed attack here is the same as shown in
Figure 3 and Figure 4, which we will discuss later in our
metadata section.

Our second TCP filter is based on a new top talker tu-

3

ple, which is loosely modeled on our original flow list
5-tuple as found in Cisco’s netflow tool [1]. We call this
the SYN list tuple. It has a number of outputs or views
in the back-end including a histogram sorted by the top
IP source senders of SYNS (see Figure 2), the worm
counter, and the port signature report, covered in section
refvalidation. The tuple stored by the SYN list has the fol-
lowing rough form:

(IP source address, SYNS, SYNACKS,
FINSSENT, FINSBACK, RESETS,
ICMP ERRORS, PKTSSENT, PKTSBACK,
port signature data)

The logical key in this tuple is an IP source address.
SYNS, FINS, and RESETS are counts of TCP control
packets. SYNS are counts of SYN packets sent from
the IP source, and SYNACKS are a subset of only those
SYNS sent with the ACK flag set. FINS sent both ways
are counted. RESETS are counted when sent back to the
IP source. ICMP ERRORS refers to certain ICMP errors
like unreachable or TTL errors returned by receivers. The
PKTSSENT counts the total packets sent by the IP source,
and PKTSBACK counts the total pkts returned to the IP
source. There is also a small fixed set of sampled TCP
destination ports that we will discuss more below in sec-
tion refvalidation. This tuple captures the idea of two-way
data exchange in a number of ways including counters
PKTSSENT and PKTSBACK, FINS BACK, RESETS,
etc.

There are currently two weights associated with the
SYN tuple, which we call the work weight, and the worm
weight. The work weight is computed per IP source as
follows:

���������	�	��
�����������

and is expressed as a percent. The rough idea here is
that we take control packets likely to be used in an anoma-
lous way and divide that count by the total number of TCP
packets. Obviousally 100% here is a bad sign and implies
a true anomaly of some sort. Such a value is typically
associated with a scanner or worm. On the other hand,
if ordinary data packet exchange has occured, the weight
will be lower and very well may be 0% for classic long-
lived connections like FTP. FINS sent are included to cap-
ture FIN only scans. Resets returned are included because

they are generated by attacks and we want an attack with
SYNS producing RESETS to tend to 100%. We will dis-
cuss the worm weight in subsequent sections.

In the top SYN graph (Figure 2) our histogram labels
show the IP address, followed by the FIN (f), RESET (r),
total count (t), and work weight plus an additional ”worm”
flag. The worm flag is based on the work weight metric
and is set to ”W” if that metric is 90% or more. In the
graph the line below the FIN and RESET counts shows
the SYN count used for sorting.

A few packets of (simplified) tcpdump output for the
top host in the graph are as follows:

131.252.X.Y.3885 > 10.0.0.1.445: S
131.252.X.Y.3886 > 10.0.0.2.445: S
131.252.X.Y.3886 > 10.0.0.3.445: S

In other words, the PSU host in question is performing
a port 445 (Microsoft file share) TCP SYN scan of exter-
nal IP hosts. It has a virus and is searching for other hosts
to infect.

Our first generation SYN tuple merely counted SYNS,
FINS, and RESETS, and sorted on SYNS. We quickly
learned that in general many SYNS and no FINS was a
sign of an infected host. However we also found that we
had false positives in the sense that a few IP hosts would
commonly register work weights in a range less than 70%
but higher than say 10%. Your average garden-variety
worm would have a higher value, typically 100%, but it
was not clear at first the reason for intermediate range
values. We also performed a modest statistical analysis
of multiple million packet samples gathered both during
”normal” and ”abnormal” times where abnormal meant
large external SYN attacks on PSU were underway (as
seen by our tworm graph in Figure 4). This showed that
in general hosts tender to cluster around low weights, or
high weights (during attack periods), but medium weights
(between 30..70%) were much less common.

Eventually we determined via manual means (tcpdump
for ports and ngrep for content) that the majority of hosts
in the middle range were running P2P clients of various
forms. P2P systems may generate high rates of SYNS
with less successful numbers of connections with peers,
hence they may have non-zero work weights. However in
general they are doing some work, hence medium (and
low) range work weights are common. Researchers in

4

general should be aware that P2P clients may cause false
positives if one simply counts SYNS – although we found
that in general with our particular metric more modern
P2P applications like BitTorrent (compared to Gnutella)
have lower but non-zero work weights (say 20% or less).
Some apps like Gnutella have higher work weights (say
30% as an average, although higher is possible).

The SYN list graph can at times be paired with the BPF
TCP control graph. The BPF control graph presents a
network-based point of view and the SYN list gives in-
dividual IP sources generating high rates of SYNs. We
have seen examples where a spike in the control graph can
be matched up to a log entry in the SYN list at the same
time. It is also often the case that many IP sources are
generating small numbers of SYNS at the same time, thus
raising the SYN line on the BPF graph, but not showing
any obvious evidence in the SYN list.

The SYN list graph ultimately has been found to be
frustrating simply because it did not provide enough data
about any individual host. It would indicate a host was in-
teresting, but one still had to resort to a sniffer for details.
Also it did not provide any help in information correla-
tion during large scale coordinated attacks. As a result
we enhanced the earlier form of SYN tuple to include a
small set of destination ports and packet counts for those
destination ports, thus laying the groundwork for our port
signature report, which we will return to below.

3 Metadata Examples

In this section we look at two useful anomaly detec-
tion mechanisms that are ”metadata” by which we mean
second-order graphs derived computationally from exist-
ing filters. Both figures in this section show the same dis-
tributed TCP SYN attacks coming into PSU from multi-
ple IP sources over the same time period. These attacks
may have used the agobot (or phatbot) tool and involved
remotely controlled IRC chat servers [14].

Figure 3 which we will call the flow count graph shows
the count of flows for IP (all IP flows), TCP, UDP, and
ICMP flows respectively. We assert that it is reasonable
to view the count of flows in a network as part of the con-
trol plane of the local network. Typically top talker flows
would show the top flows in terms of bit rate. Here we
instead show the total count of all the flows during the

sample period and represent the count for the four kinds
of flows in an RRDTOOL graph.

In this case, we can see a number of spikes in the count
of TCP flows. In general, baselined RRDTOOL data has
shown that PSU traffic in terms of the TCP flow count
is diurnal, with perhaps 1k flows at night and 2k flows
during the day. Here we see one spike at 9:30 PM on
the previous day that has doubled the number of flows to
around 4k. Of course in this case we have ”flows” of one
packet as PSU’s IP destination address space (a class B
) is being walked by multiple external IP sources. This
graph shows a total of 5 TCP spikes, and also one UDP
event as well.

Figure 4 which we will call the worm count graph
is probably our most visually interesting artifact. It is a
count of suspicious TCP SYN scanners that is produced
as a side effect from the previously mentioned top talker
SYN list. In this case our front-end takes the entire sorted
list, and produces a subset of ”interesting” SYN tuples
primarily including hosts that satisfy the following worm
weight:

�������������

We simply subtract the FINS returned from the SYNS
sent and only store the tuple if C, a constant, is greater
than some manually configurable constant (which is con-
figurable and defaults to 20 in the current system). We
justify C in an intuitive sense by pointing out that in gen-
eral C should be chosen as large enough that any given
IP source in the set is generating more SYNS than FINS,
thus one can claim any IP source satisfying C is in some
sense ”noisy”.

Thus the tworm graph consists of IP sources that have
satisifed the worm weight. There are three counters
shown in the tworm graph, 1. total IP worm weight
sources, 2. ”us” (meaning hosts that belong to the home
network, PSU), and 3. ”them” (hosts that are external to
the home network). The resulting graph shows a number
of sustained attacking periods with worst-case counts of
roughly 1K IP sources. (Agobot is capable of spoofing
IP source addresses and thus there really isn’t any known
way at this time to tell how many true IP hosts were in-
volved in these attacks). We were incredulous at first as to
whether or not this filter worked, but the curves produced
by it have been verified by hand using tcpdump, and by

5

other graphs including the flow count filter pictured be-
low and the RRDTOOL/BPF graph of TCP control pack-
ets (Figure 1). We believe it is producing credible results.

Our subtractive metric seems to work simply because
when large attacks are not taking place we are ignoring
large numbers of small producers of SYNS and FINS
(most applications) and hence establish a stable and small
count baseline that may consist of some P2P apps and
some single host infections. When an attack occurs, typ-
ically most of the attacks produce SYNS with few or no
FINS, and hence raise the curve.

The exact value of the constant C is debateable and may
be network dependent. Our network is open and has many
P2P users and a higher value may be more appropriate. A
more conservative network might want to have a smaller
less noisy value.

4 Validation and TCP Port Signa-
tures

In this section we wish to discuss our validation and test-
ing of the TCP-based work mentioned previously. We do
this in the context of a novel reporting technique called a
port signature report. This report consists of that subset
of the SYN tuple set that barring a few exceptions satisfies
the worm weight. It includes metrics like the work weight
and other metrics as well including a small set of 1 to 10
port tuples which provide information about TCP desti-
nation ports. Thus this gives us a limited view of ports
used by the IP source during the sample period. It also
presents information in such a way that attacks from mul-
tiple IP sources can be correlated. In this section we will
discuss the port signature in more detail using a tabular
representation of the port report, and also discuss our val-
idation efforts in terms of both the summarized port report
and a small Microsoft-oriented application study we per-
formed to help us better understand what we were seeing
in the port report.

Before we present the port signature and related ef-
forts aimed at validation, consider the following state-
ment from Jung, et. al.[4]: ”Consequently our argument
is nearly circular: we show that there are properties we
can plausibly use to distinguish likely scanners from non-
scanners in the remainder hosts, and we then incorpo-

rate those as part of a (clearly imperfect) ground truth
against which we test an algorithm we develop that de-
tects the same distinguishing properties”. Ultimately in a
very narrow sense, it is important to remember, our work
weight system catches anomalies, as for example in the
limited scope of a system sending SYNS and not getting
any packets back (barring resets). 100% indicates a true
anomaly, but ultimately we do not know if said system is a
scanner, a misbehaving program, or a misbehaving worm!
We cannot see intent – we can only see the symptoms.

Looking at SYN counts alone does not help much –
the next step is to run a sniffer and see if anything can be
learned from the packets themselves. This is time con-
suming and not helpful to IT people who lack time. Fur-
ther a sniffer trace is not a good way to diagnose an attack
in parallel either. We want something that gives us more
details and yet at the same time gives us the big picture as
a parallel view of multiple IP sources. Looking at a sam-
ple set of ports does help us determine in some cases that
a particular pattern is an attack, especially when we base
our observations in either shared IT experience (via the
Internet, local communication between local security gu-
rus and IT staff, the PSU abuse list, and experience gained
from cleaning up local infected systems) or as possible,
conducting a more formal study of certain applications
and their behavior as seen with Ourmon behind a firewall
or in a lab. In consequence in some cases, but not all, we
”know” we have an attack.

The (somewhat simplified) port signature report given
in table 1 consists of a small set of interesting examples
taken from one real PSU report from fall 2004. Note that
the table is not focused on only high work weights – it is
simply one data item out of a composite set. (The real port
report can be seen at any time at: http://ourmon.
cat.pdx.edu/ourmon/portreport.txt).

Each port signature begins with the IP source in ques-
tion, with statistics for each individual IP source given per
line. In addition to three metrics, flags, work, and SA/S,
the primary mechanism here is the port signature on the
far right of each IP source. The port signature includes 1
to 10 two-tuple port samples, with each port sample con-
sisting of a destination port and a packet frequency count
for each port in the port sample space. The number of
buckets for port destinations is currently set to 10 (we use
ellipsis in the table for cases where the entire port sam-
ple space is filled). For example the third entry shows

6

Table 1: Port Signature Report
ip src flags work SA/S port signature

1 (WOM) 100 0 [445,100]
2 (WOM) 100 0 [24910,100]
3 (WOR) 100 0 [5554,65][9898,34]

3.1 (WOR) 100 0 [5554,65][9898,34]
4 () 6 100 [1151,1][1905,20] [...
5 () 22 0 [1433,99][3536,0]
6 () 2 10 [1124,14]...[6881,36][6882,5]...
7 (WOR) 100 0 [139,33][1025,22][2745,21][6129,23]

that packets were sent to TCP ports 5554, and 9898 by IP
source 3. The former port received 65

The port signature report is sorted in ascending order
from top to bottom in terms of its logical key, the IP
source address. (Here we are replacing real IP addresses
with logical numbers as substitutes – IP source 1 will
be referred to as example 1, etc.) A sorted IP source
space is useful because one can see ”nearby” or same IP
source network groupings during distributed IP attacks,
and of course, one can easily view ones own IP source ad-
dress space for outbound attacks. For example, we have
observed agobot-based attacks in which all spoofed IP
source addresses in a /24 subnet space are attacking the
same remote set of ports. In our report above, there are
two attacks that appear similar based on their ports com-
ing from the same network (3 and 3.1). The port signature
is also sorted from low port to high port and this helps us
see similar attacks using the same set of ports. Again the
same two ”anomalies” (from 3 and 3.1) have the same
port signature and are likely to be the same attack.

The flags metric shows us whether or not the worm can-
didate is receiving two-way data. Flags here include:

1. W - the work weight is 90% or higher.

2. 0 - few fins if any are returned.

3. R - large numbers of resets are being returned.

4. M - few non-reset data packets are being returned.

SA/S is a simple metric that measures the number of
SYN+ACK packets sent, which typically are the second
packet in the TCP three-way handshake, divided by the

total number of SYNS. 0% suggests a client, 100% sug-
gests a server, and some number in between suggests pos-
sible P2P activity. This metric does not stand by itself but
it is very useful when coupled with other indicators. For
example if both the work weight and SA/S are 100%, one
is likely seeing a SYN+ACK scan.

The work metric is shown next. In the report, we might
choose to show only those IP sources with high work
weights (say 80% to be conservative) because of the high
rate of ”worminess” observed with the work weight. Our
IT experience suggests that out of 1000s of instances of
such anomalies, we have seen less than 10 cases that were
not attacks. These cases are true anomalies in that some-
thing is wrong, but they are not necessarily worms. Three
example anomalies so far spotted (and explained) include:
1. one case of a popular meeting application that enthu-
siatically tries to reconnect to its server when the server
is taken down for backup, 2. well-known (as opposed
to infected) campus email servers that are attempting to
forward error messages to spammers (which given fake
return IP addresses will never work), and 3. certain P2P
clients (often Gnutella-based) that have a very low success
rate for peer connections. As a result at this point in time,
we are satified with our general understanding of the work
metric in the high range. However there are a number of
reasons to look at lower work weights for hosts that have
satisifed the worm metric. One of the more fundamental
reasons is that the port report itself may capture some at-
tacks (as in example 5) where the work weight is low. In
such examples, other criteria such as ports are useful.

In an attempt to characterize a rather important set of
Microsoft ports that show up over and over in our port
report, we captured packet traces of typically a million

7

packets apiece from clients and servers protected by a
firewall from the Internet. Here we focused on specific
Microsoft ports used by the Microsoft file share system
(ports 135-139 and 445) and Microsoft SQL server ap-
plications (TCP port 1433). We dumped their associated
SYN tuples during short and long sample periods to see if
these ports would show up in the worm metric sample or
the hosts would have high work weights. The answer was
no, which conformed to the intituion of various local se-
curity experts. This is not surprising given that TCP con-
nections with these applications are typically long-term.
This gives us confidence that TCP ports in these ranges
that appear in the port report are likely attacks.

Now let us look at the examples chosen as representa-
tive of certain classes of phenomenon. Examples 1, 2, 3,
3.1 and 7 show work metrics at 1003.1 are examples of
the dabber worm[5]. Example 7 is an old phenomenon
seen many times, and is some form of phatbot/agobot at-
tack. These two examples taken together illustrate a very
interesting forensic possibility which is that the display of
the ports in some cases (not all) may allow you to identify
the worm. On the other hand, Example 2 is a new phe-
nomemon as of late November, 2004 which we have not
seen before but based on experience and the work metric,
it is highly dubious. Still we have not as of yet identified
it.

At a lower weight, example 4 shows something we call
the noisy web server phenomenon. This always appears
as an external IP address. Certain web servers seem to ex-
hibit this behavior possibly because of large numbers of
small TCP connections due to active web page displays.
The work weight tends to be low, thus there is two-way
data exchange. The SA/S metric is useful here and sug-
gfests these systems are indeed servers. This is apparently
a benign phenomemon but our understanding of this be-
havior could stand improvement.

Example 5 has a low work weight, and yet we know
from the previously mentioned application testing that
any mention of port 1433 in the work report (with large
numbers of packets) is an attack. The work weight is low
here because this is a password guessing attack on SQL
servers, thus there is (nefarious) work being done. Here
the use of ports is invaluable. It is also important to re-
member that one does not need a high work weight to
have an attack.

Example 6 is interesting, as it is quite common to

see P2P applications appear in the port signature report.
Again this is because peering P2P hosts will have some
subset of unavailable peers. Of course there is no guaran-
tee that a given P2P application is bound to a given port.
Still we surmise that this example is using BitTorrent be-
cause of ports 6881 and 6882. The SA/S metric is in-
teresting here in that it suggests the host in this example
has some server tendencies although it tends to the client
side. In general, we intend to do more research on the
lower work weights. For example, we hope to improve
our abilities to identify P2P applications.

5 Related Work

Until quite recently, scan detection has received relatively
little attention compared to other intrusive activities. Part
of the reason is the ubiquitous nature of scan and scan-like
background data. Another has been the relatively primi-
tive measures used in many intrusion detection systems
for dealing with scans. The typical IDS detects scans with
a relatively simple threshold measure. SNORT[12] is typ-
ical of this approach.

Bro[9] is similar but somewhat more stateful. Recent
work by Stolfo’s group at Columbia[11] can detect much
slower scans as well as some distributed scans by associ-
ating scan state with a subnet address rather than an indi-
vidual IP address. In addition, he has established a net-
work of detectors that exchange information about scans
detected at widely separated locations. Work at Silicon
Defense[13] collects statistically anomalous events over
a long time period and attempts to cluster them into dis-
tinct surveillance attempts. We note that this is another
example of locality applied to scan detection. The cited
paper also contains extensive background information on
the surveillance detection problem.

More recently, Jung, et. al.[4] have looked at the ratio
of connection attempts to connection successes as a func-
tion of network occupancy to choose between competing
hypotheses that the source of the attempts is a scanner
who does not know the network structure or a benign user
who occasionally fails to make a connection due to bro-
ken URL links or faulty DNS information. One principle
difference between Ourmon and this work it that Ourmon
also includes the port signature report which both helps
determine the nature of the attack and shows locality in-

8

formation about attacks in parallel. Also perhaps the na-
ture of the networks in question may influence the results.
Perhaps PSU sees more P2P traffic due to the large local
population of students?

6 Conclusion

In conclusion, we suggest that network control data may
be viewed as a rich source of information about normal
network locality. In particular, anomaly detection may
make use of network control data as represented by TCP
control packets, flow counts, ICMP errors, and in the case
of individual IP sources, counts of packets sent to and re-
turned from the IP sources themselves. We have shown
graphs and reports that exploit this phenomenon which are
based on either using simple integer counts or top talker
graphs (histograms). In general, RRDTOOL graphs give
us a network point of view. The histograms and port sig-
nature report give us a per IP source view.

Our control theory notion has suggested a number of
interesting new tuples and metrics including:

1. A per IP source TCP SYN tuple that includes two-
way data. This SYN tuple can be used for multi-
ple outputs including a port signature report which
shows anomalies in parallel, and a top talker his-
togram graph that shows sources sending the largest
numbers of SYN packets.

2. We have derived two metrics from this SYN tuple in-
cluding a work weight metric that gives us a simple
way to determine if an IP source is simply bombard-
ing us with packets or if there is genuine two-way
work going on between that source and remote desti-
nations. Our worm weight metric gives us a set of IP
sources that seem to be ”noisy” in terms of sending
more SYNS than FINS, and when combined with the
work weight and other data helps us find scanning
anomalies.

3. Our port signature report gives us insight into par-
allel anomalous sources. This can reduce the time
spent trying to characterize the activity of a remote
set of sources, which may be exhibiting a known
anomaly or running a P2P application.

4. For reasons of brevity in this paper, we have ne-
glected discussion of UDP/ICMP scanners. How-
ever we have also developed a UDP work weight
based on two-way exchange of UDP data, and re-
turned ICMP errors.

One important thread in these tuples and weights is the
notion of two-way data. Data returned may either lend
credibility to the notion that real work is going on, or
detract from that notion if the packets returned are er-
rors. Another important aspect of these tuples are error
counts. For TCP that primarily means RESETS and for
UDP, ICMP errors.

Although we feel our work reported here is exciting, it
is also recent and preliminary. Anomaly detection work
takes time and must be based on long-term analysis and
long-term baselining of normal (and abnormal) data. As
an example of even a simple metric that needs study, con-
sider our RRDTOOL/BPF graph of SYNS, FINS, and
RESETS in the PSU network. We are not sure what ra-
tio of SYNS to FINS is reasonable in the PSU network?
One might also ask what the ratio should be for particular
kinds of applications (email or web), particular hosts, sub-
nets, autonomous systems, and the Internet as a whole? In
other words, what kinds of ”localities” might exist, and
what might one expect a healthy locality to look like?
Such information would be invaluable for determining the
health of that locality.

In the near future, we hope to take our various counters
and metrics per IP source including SA/S counts, two-way
flags, the work weight, and the port signature tuples and
determine if we can use these techniques possibly coupled
with Bayesian statistical methods to detect P2P flows or
attacks in a more general way. We intend to study the
worm weight as well and analyze the constant used there
to determine under what circumstances a different con-
stant might be useful.

7 Acknowledgements

Thanks to Cory Bell, Suresh Singh and Bart Massey for
their suggestions and criticism.

9

References

[1] Cisco Systems. Cisco CNS NetFlow Collection
Engine. http:
//www.cisco.com/en/US/products/sw/
netmgtsw/ps1964/products_user_
guide_chapter09186a00801ed569.html,
April 2004.

[2] E. G. Coffman and P. J. Denning. Operating
Systems Theory. Prentice-Hall Inc., 1973.

[3] C. Gates, J. McHugh, and J. Binkley. An analysis
of threshold random walk. 2004, Submitted to
RAID 2004.

[4] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan.
Fast Portscan Detection Using Sequential
Hypothesis Testing. In Proceedings of the IEEE
Security and Privacy Conference, Oakland,
California, May 2004.

[5] Lurhq Corporation virus information.
http://www.lurhq.com/dabber.html,
Dec 05, 2004.

[6] S. McCanne and V. Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet
Capture. Proceedings of the Winter 1993 USENIX
Conference, San Diego, January 1993.

[7] J. McHugh and C. Gates. Locality: A new
paradigm for thinking about normal behavior and
outsider threat. In New Security Paradigms
Workshop, Anscona, Switzerland, August 2003.

[8] Ourmon web page.
http://ourmon.cat.pdx.edu/ourmon,
May 2004.

[9] V. Paxson. Bro: A System for Detecting Network
Intruders in Real-Time. In Proceedings of the 7th
USENIX Security Symposium, San Antonio,
Texas, January 1998.

[10] RRDTOOL web page. http://people.ee.
ethz.ch/˜oetiker/webtools/rrdtool.
November 2003.

[11] S. Robertson, E. Siegel, M. Miller, and S.Stolfo.
Surveillance Detection in High Bandwidth
Environments. In Proceedings of the 2003 DARPA
DISCEX III Conference. April, 2003.

[12] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In Proceedings of the USENIX LISA
’99 Conference, Novemember 1999.

[13] S. Staniford, J. A. Hoagland, J. M. McAlerney,
“Practical Automated Detection of Stealthy
Portscans,” Seventh ACM Conference on
Computer and Communications Security, Athens,
Greece, 2000.

[14] Symantec virus information,
W32.HLLW.Gaobot.gen.
http://securityresponse.symantec.
com/avcenter/venc/data/w32.hllw.
gaobot.gen.html, May 05, 2004.

[15] Symantec Virus Information, W32.Welchia.Worm.
http://securityresponse.symantec.
com/avcenter/venc/data/w32.
welchia.worm.html, August 18, 2003.

[16] Tcpdump/libpcap home page.
http://www.tcpdump.org, September 2003.

[17] Waldbusser, S. Remote Network Monitoring
Management Information Base Version 2. IETF.
RFC 2021, January 1997.

10

Figure 1: TCP Control Data - Large SYN Attack

Figure 2: Top N TCP SYNS - 445 Scanner

11

Figure 3: Top N flow count - Large SYN Attack

Figure 4: Worm Count - Large SYN Attack

12

