Ourmon versus IXIA: Monitoring Gigabit Speeds

James R. Binkley
Computer Science
Portland State University
Technical Report TR-04-01, March 30 2004
grb@cs.pdx.edu

March 11, 2004

Abstract

In this paper our goal is to analyze the performance
of our network monitoring system called Qurmon
and its underlying kernel delivery system the Berke-
ley Packet Filter (BPF) to see how well they per-
form using Gigabit Ethernet. We measure the per-
formance of the underlying BPF network tap on
FreeBSD, as well as the performance of application-
layer filters used by our Ourmon system. Our test
system consists of an IXIA 1600 high-speed packet
generator which can send packets at near theoreti-
cal speeds. We show that if the BPF kernel buffer
size is megabytes in size, a workstation using the
Ourmon filters can avoid dropped packets at Giga-
bit speeds. We also show that when minimum-sized
Ethernet packets are sent, the BPF/Ourmon system
utterly fails at a relative small throughput rate.

1 Introduction

The Internet has recently faced an increasing number
of bandwidth-intensive denial of service attacks. For
example, in January 2003, the slammer worm [3, 11]
caused serious disruption, not only wasting band-
width and affecting reachability, but also demonstrat-
ing some serious side effects in core routing infras-
tructure. At Portland State, four lab servers with
100 megabit NIC cards were infected simultaneously.
They then sent approximately 360 megabits of small

packets to random destinations outside of PSU. This
attack not only clogged PSU’s external connection to
the Internet, but it also caused serious network mon-
itoring failures as well. Due to the semi-random na-
ture of the IP destination addresses generated by the
worm, the CPU utilization of a router sitting between
network engineers and network instrumentation rose
to 100%. Thus engineers were cut off from central
network instrumentation at the start of the attack.

As a result of the slammer attack, and also due
to our fortunate acquisition of an IXTA 1600 packet
generator, we decided to test our Ourmon [13] net-
work monitor system with a series of Gigabit Ether-
net flows. Our tests included maximum-sized (1518
byte) and minimum-sized (64 byte) UDP packets,
and flows with rolling IP destination addresses.

The Ourmon network measurement system archi-
tecturally has two parts: a front-end probe, and a
back-end graphics display system. Optimally these
two parts should run on two separate computers in
order to minimize the application compute load on
the probe itself. Our goal here was only to test the
performance of the front-end Ourmon probe and its
BPF ”network tap”, so we did not test the back-end
graphics system.

We constructed a test system consisting of the
IXTA with two Gigabit Ethernet ports, a line speed
Gigabit Ethernet switch capable of port-mirroring,
and a UNIX workstation with a Gigabit Ethernet
NIC card. The switch was setup to mirror packets
to the UNIX host running our front-end probe and

the IXTA was setup to send packets from one port to
the other port.

Like other tools including tcpdump [17], snort[14],
or ntop [4, 12], the Ourmon front-end uses the BPF
as a ”packet tap”. This means that the applica-
tion takes a stream of unfiltered packets directly
from an Ethernet device, bypassing the host TCP/IP
stack. The interface interrupts on packet input, and
places the trimmed packet (trimmed to give all head-
ers through layer 4), in the kernel BPF filter. The
front-end Qurmon probe then reads packets subject-
ing each packet in turn to a set of configuration fil-
ters. Hence it makes sense to test both the BPF
performance by itself, and Ourmon probe component
filters in turn.

Our experimental questions include the following;:

e 1. Using Gigabit Ethernet, with maximum-sized
packets, or minimum-sized packets at what bit-
rate can the underlying BPF tap and buffer sys-
tem, not lose packets?

e 2. Given minimum and maximum packet sizes,
if we encounter drops, can we increase the kernel
BPF buffer size, and not drop packets?

e 3. Our Ourmon tool has three kinds of filters,
simple hardwired C filters, multiple BPF-based
interpreted expressions, and a top N flow anal-
ysis system. Can we determine anything about
the relative performance of these filters? Put an-
other way, if we are receiving a high number of
packets per second, can we get useful work done
with these filters?

e 4. With the slammer worm, we know that
semi-random IP destinations made router route
caching algorithms inefficient. Thus what hap-
pens when we subject our top N flow monitor to
rolling IP destinations?

In section 2 we provide a brief introduction to the
Ourmon system. In section 3 we discuss our test
setup. In section 4 we present test results, and in
section 5 we provide an analysis and conclusion.

\ Internet

border router

| port 1

campus

“—| Ethernet switch

port 2 port 3

DMZ monitors

Figure 1: Ourmon network setup

2 Introduction to Ourmon

Although our goal in this paper is not to explain how
the Ourmon system works in detail, it is still neces-
sary that we explain enough of the Ourmon system
functionality so that the reader will be able to appre-
ciate the performance measurement work itself. As a
result, we give a brief overview focused on the front-
end packet capture system.

Ourmon is a real-time web-based network monitor
somewhat similar to SNMP RMON [18] systems or
ntop. Unlike SNMP RMON, it does not present a
set of variables encapsulated in a probe accessed via
the SNMP protocol from a management system. In-
stead Ourmon assumes the port-mirroring function-
ality of Ethernet-based switches. A typical setup may
be seen in Figure 1. An Ethernet switch is configured
to ”mirror” (duplicate) packets sent in/out its Inter-
net connection (port 1). All packets sent via the In-
ternet port are copied to port 3, which is running the
front-end Qurmon probe on a FreeBSD system with
the BPF packet tap. Thus Qurmon’s probe setup is
similar to Snort which we show running on port 2 of
the switch. The probe system ideally sees all packets
going to and from the Internet. The back-end Our-
mon graphics engine may run on a second computer,
which need not be in the center of a network.

The probe has an input configuration file and an
output file. The input file, called ourmon.conf, speci-

fies various named filters for the probe to use. Probe
output is written to a small ASCII file called mon.lite
, that represents a summarization of the last 30 sec-
onds of filter activity in terms of byte or packet counts
per named configuration filter. This file may be
copied over the network where it acts as an input to
the graphics-engine computer which in turn produces
various graphics outputs and ASCII reports for web
display. The back-end graphics engines produces two
kinds of graphics, including RRDTOOL-based [15]
stripcharts, used with BPF filter-sets and hardwired
filters, and histograms used to display the top N flow
analysis.

The Ourmon front-end process uses the BPF in two
ways. It uses it to get packets from the kernel BPF
buffer system. It also uses the BPF interpreter in
user-mode, where the configuration can take multiple
BPF filter expressions, group them together in a BPF
filter-set and graph each expression in the set as a
separate line in a single RRDTOOL strip chart graph.

As an example, here is a simplified configuration
for one BPF filter-set that groups the performance
of five application services together with one BPF
expression per service, including secure-shell, various
P2P protocols, web, ftp, and email.

bpf "ports" '"ssh' "port 22"

bpf-next "p2p" "port 1241 or port 6881"
bpf-next "web'" "port 80 or port 443"
bpf-next "ftp" "port 20 or port 21"

bpf-next "email" "port 25"
Probe output for such a filter over a snapshot pe-
riod might look like this:

bpf:ports:5:ssh:254153:p2p:19371519:
web:41028782:ftp:32941:email: 1157835

The filter configuration allows the user to first
name the composite graph ”ports”, and then to map
user-mode BPF configuration expressions like ”port
22” to appropriate line labels ("ssh”) in the same
graph. Thus ssh/p2p/web/ftp/email byte counts will
all appear in the same RRDTOOL graph as in Figure
2. The probe executes the five user-mode BPF run-
time expressions on the incoming packet stream from
the packet tap and counts matching bytes. At the

sample period timeout, it outputs the mon.lite file
which in this case includes the name of the filter-set,
and various (line label, byte count) tuples for each
BPF expression. It should be pointed out that mul-
tiple BPF filter-sets are possible, and thus many sep-
arate BPF expressions can be executed in the probe
application. The current PSU DMZ probe software is
running around 60 BPF expressions in sixteen filter-
sets.

Ourmon also supports a small set of ”hardwired”
(programmed in C) filters in the probe that are
turned on via configuration names in the configura-
tion file. As one example, we have a hardwired filter
that counts packets according to layer 2 unicast, mul-
ticast, or broadcast destination address types. One
very important filter called the packet capture filter
includes statistics on dropped and counted packets
provided directly from the BPF kernel code. The
packet capture filter is fundamental as it was used to
determine when the kernel BPF mechanism was over-
loaded in our testing. Typical front-end output in the
mon.lite file for that filter and the layer 2 packet ad-
dress type filter could look like this:

pkts: caught 53420 drops: 0
fixed_cast: mcast: 2337215:
unicast: 15691896: bcast: 0:

The packet capture filter ("pkts”) output means
that the BPF during the last sample period caught
53240 packets and dropped none. In Figure 3,
we show an example back-end graph for this filter.
Drops are in green and captured packets are in blue.
This picture was taken on the day of a slammer re-
infection. Tt can be seen that the Ourmon probe (at
the time a Pentium-3) successfully caught the attack,
even though many packets were dropped.

The third and last filter class in Qurmon is a ”top
N” flow monitor. The front-end builds up a hashed
sorted list of IP flows over the sample time and writes
the top N (around 10) TCP, UDP, and TP (all TP pro-
tocols) flows to the output file. The back-end takes
this information and produces graphical histograms
and text reports. A flow is defined as the following
5-tuple: (TP source, IP destination, TP next protocol,
L4 source port, L4 destination port). See Figure 4

for an example, where we show a denial of service at-
tack with a spoofed IP source address launched over
Internet2 at a local I'T administrator’s host machine.
Multiple UDP flows, each around 1.5 megabits are
shown.

In summary, the front-end has three kinds of filters,
1. hardwired C filters, 2. user-mode BPF filter-sets,
and 3. top N flow analysis done with a dynamically
allocated hashed list of flow IDs. Intuitively we are
interested in the relative execution cost of these three
kinds of filters. Although it must be pointed out that
there is only one top N flow filter, and a user may
program any number of BPF filter sets. Also bear
in mind that the packet capture filter is important
as 1t serves to tell us when we are losing packets.
We can view this as an important indicator that the
combined kernel and probe application system is in
failure mode likely due to too much work done at
the application layer causing the application to fail
to read buffered kernel packets in a timely manner.

3 Experimental Setup

The hardware used in our testing consists of three
pieces of equipment:

e 1. an IXTA 1600 chassis-based packet generator
with a two port Gigabit Ethernet line card. We
used the Gigabit line cards to both send and re-
ceive UDP packet flows. One port sent packets
and the other port received packets.

e 2. a Packet Engines line speed Ethernet switch.
Three ports on the switch are used, including one
for the IXTA send port, one for the IXIA receive
port, and a third port connected to the UNIX
host for mirroring the IXITA flow.

e 3. a 1.7 gigahertz AMD 2000 CPU computer
system. (This system is roughly comparable to
an Intel Pentium 4 processor). The motherboard
for this system is a Tyan Tiger MPX S2466N-
4M. This motherboard has two 64-bit PCI slots
and we used a Syskonnect SK-9843 SX Gigabit
Ethernet card in one of the slots.

Software used included Ourmon 2.0, and the libp-
cap [17] library version 0.7.2. The host operating
system was FreeBSD 4.7, running only the Ourmon
front-end probe.

We setup the IXIA to send either minimum-sized
packets or maximum-sized Ethernet packets. One
port on the IXTA would send packets through the
switch to the other IXTA port. Thus we were able
to use the IXIA’s per port packet counters to verify
that packets were not lost as input counts matched
output counts on both IXIA ports. All packets were
UDP packets. Also the IXTA allows the user to slow
the packet sending rate from the maxiumum rate to
0%. The IXIA is also able to auto-increment IP des-
tination addresses, and we used this as an additional
test against the top N filter.

As a measurement baseline, according to [6], one
can calculate the maximum and minimum theoretical
packet rates for Gigabit Ethernet as found in Table
1 below. We observed that the IXIA 1600 can in-
deed generate packets at nearly 100% of this rate for
both minimum and maximum-sized packets. We used
these numbers to make sure that our Ethernet switch
did not drop packets by hooking both IXIA Giga-
bit ports up directly to the switch, and then sending
packets from one IXIA port to another IXIA port.
The IXIA reported that the switch sent and received
packets at line speed in both cases.

size(bytes) | pps
min | 64 1488000
max | 1518 81300

Table 1: Gigabit Ethernet PPS

Our basic method of test implementation was to set
up the UNIX host with a shellscript driver and some
set of Ourmon filters, start the front-end probe, and
then configure the IXTA to send min/max packets at
some rate between 0..100%. With Ourmon we simply
would configure in or out our three kinds of filters,
1. hardwired, 2 user-mode BPF, and 3. top N as
desired, and then run tests observing the results in
the mon.lite output file.

The shellscript driver for the experiment is as fol-
lows:

#!/bin/sh
BSIZE=1048576
sysctl -w debug.bpf_bufsize=$BSIZE
sysctl -w debug.bpf_maxbufsize=$BSIZE
./ourmon -a 5 -I skO -m /dev/tty

-f ./ourmon.conf

The FreeBSD sysctl(8) command is used to set the
kernel BPF buffersize to a given size. This i1s because
recent versions of the PCAP library on FreeBSD will
take this information and automatically size the ker-
nel buffer to be used by the application (ourmon) to
the same size. This is a relatively new feature and was
very handy for our experiment. It should be noted
that the traditional size of the kernel BPF buffer is
typically small (4k bytes in FreeBSD 4.9) and was
intended for the tcpdump sniffer application. The
parameters to the Ourmon probe program tell it to
take input from a local configuration file, dump the
output information to the screen every five seconds
and use the SysKonnect card as the input interface.

Overall our test plan consisted of tests based on
either maximum-sized packets and minimum-sized
packets. If we dropped packets, we attempted in ev-
ery case to stop dropping packets by increasing the
kernel BPF buffer size (BSIZE above). If that failed,
we would then reduce the IXIA’s send rate to where
we stopped dropping packets.

For testing, we decided that there were five possi-
ble types of Ourmon filters groupings including the
packet capture filter by itself, and categorized filter
tests into these types: 1. the packet capture filter
(hereafter called the ”null” filter, because it cannot
be turned off, and is the only remaining statistic when
all ourmon filters (hardwired, etc.) are removed from
the configuration). 2. the hardwired C filters as a
group, 3. BPF filters as 1 or more filter-sets, 4. the
top N filter mechanism, and 5. a simple combination
of all filters.

Of course, the null filter tells us whether or not the
BPF in the kernel was losing packets, as it was dis-
playing the count/drop information taken from the
operating system. Except for the null filter, and ex-
cept for the combination filter test, the filters were
always put in by themselves in order to determine if
the filter type itself had an impact on the overall per-

formance. There were six hardwired C filters (at the
time of testing). BPF filter-sets were based on a set
that had 4 simple filters in it. The individual BPF ex-
pressions were configured to capture TCP ports that
could not match the output of the IXIA (UDP pack-
ets), as it seemed reasonable for BPF expressions to
always fail to match.

For the top N test, as it was not interesting to test
the top N mechanism with the same IP flow over and
over again, we used a rolling IP destination setup
where each subsequent UDP packet within a set of
1000 or 10000 had a different TP destination. This
could be said to be a rough simulation of the slammer
worm with 1ts variation in IP destinations.

4 Test Results

4.1 Maximum Packets

In this set of tests, packets are always 1518 bytes, the
normal maximum MTU for Ethernet packets. (This
works out to a 986 megabit flow of UDP packets).
Our tests were as follows: 1. null filter only, 2. hard-
wired filters only, 3. top N filter only, 4. various BPF
filter sets, and 5. combined filters as summarized in
Table 2.

The flow rate was set to maximum so the drop rate
shows packets lost at Gigabit speeds. With only the
the null filter, the configuration almost worked with
the default BPF buffer size of 4 kBytes, except that
some packets were lost at a 30 second interval. This
may have something to do with an operating system
timer. Increasing the kernel BPF buffer size to 128
kBytes removed the loss. Adding in the hardwired
filters caused no additional loss.

The top N filter worked with no loss at 1000 flows
and completely failed at 10000 flows. Larger bpf-
buffers did not help (shown as XXX in the table).
This is the most significant failure case with maxi-
mum MTU packets. However we noted that if we
decreased the IXIA flow-rate to 45mbits, it was pos-
sible to get back to 0% loss.

With the BPF filter-sets, we increased the number
of filters to 8 sets (32 BPF expressions), and ran into
some loss. At that point, we increased the kernel

test bpf-sets | topn flows | min BPF size | drop rate
null filter 128 kB 0%
hardwired 128 kB 0%
topn 1000 128 kB 0%
topn 10000 XXX 80%
bpf 1 128 kB 0%
bpf 4 128 kB 0%
bpf 8 128 kB 20%
bpf 8 7 MB 0%
test config | 1 1000 7 MB 0%
Table 2: Maximum Packet Tests

BPF buffer size. We found that a very large buffer of
7 MB could indeed get back to 0% packet loss. With
our sample test configuration (hardwired filters 4+ top
N + 1 BPF set) we did not experience any loss, but
this was because we were only using 1000 flows with
the top N filter.

4.2 Minimum Packets

With minimum-sized packets of 64 bytes, due to the
problems associated with capturing packets at that
size, we will report our results as a series of small
experiments. Each experiment focuses on a different
test domain.

4.2.1 Null Filter Only

With only the null filter counting drops, it was not
possible to capture all packets. Instead we attempted
to determine if the kernel BPF buffer size had any
impact as shown in the table below:

BPF buffer size | starting drop rate (mbits)
32 kB 53.33
128 kB 68.52
256 kB 76.19
512 kB 76.19

Table 3: Minimum Packets and Null Filter

A buffer size of 256 kBytes appears optimal and at
the speed of 76 megabits the system begins to drop
packets. Larger kernel buffers do not improve the

result. Of course the most important aspect of this
test is that we cannot capture more than around 10%
of the Gigabit stream without loss. !

4.2.2 Individual Filter Types

We have now determined at what rate the NULL fil-
ter can capture packets without further drops. We
now measure what happens by adding in the three
previously described sets of filters where each filter
type 1s tested in isolation. In the BPF filter-set tests,
we tried both one and two sets. In the top N filter
test, we vary the number of different flows. Table 4
below shows the results for the hardwired and BPF
tests. Table b shows the results for the top N tests.

test bpf-sets | flow-rate (mbits) | drop rate
hardwired 76 0%
bpf 1 68 0%
bpf 2 53 0%

Table 4: Hardwired and BPF Tests

Hardwired filters have no impact on performance.
BPF filters have some impact, and it can be seen that
even at a modest 76 megabits as a starting point, real
work has a cost.

At this speed, 1000 unique flows is stressful for the
top N filter. However reducing the flow rate to 45
mbits allows the computer to process the data. Un-
fortunately 10000 flows with any kernel buffer size or

! Packet overhead with minimum packets results in a max-
iumum flow of around 760 megabits.

flows | drop-rate | buffer-size | flow-rate(mbits)
1 0% 256 kB 76

100 1% 256 kB 76

1000 | 25% 256 kB 76

1000 | 0% 256 kB 45

10000 | 50% * *

Table 5: Minimum Packets - Top N Tests

speed simply fails. This suggests that simple stan-
dard hashing techniques may be too slow to keep up
with denial of service attacks.

4.2.3 All Filter Types

In this experiment we measure all three types of fil-
ters at the same time. Here we only vary the flow-
rate, and do not vary the previous 256 kBytes buffer
size. The IXTA was sending 1000 flows.

flow-rate (mbits) | drop-rate
76 44%

68 37%

53 18%

45 03%

38 0%

Table 6: Minimum Packets - All Filter Types

Probably because of the top N filter fielding 1000
flows, we see that we must reduce the flow-rate by
roughly one-half in order to prevent drops. The filters
here are truthfully fairly minimal as there is only one
BPF filter set. In reality, one would want more BPF
filter sets as this feature i1s fundamental to Ourmon.
The bottom-line here is that we must reduce the flow-
rate to 38 megabits for even a modest amount of work
to be performed without packet loss.

5 Conclusion
Our paper introduces a new monitoring tool called

Ourmon and discusses experiments aimed at mea-
suring the performance of both the underlying kernel

BPF buffer system and Qurmon front-end filter sys-
tems.

In terms of related work, regarding Ourmon itself,
probably the closest similar system is ntop [4]. Ntop
is a single program intended to run on desktops and
in some sense can be viewed as a network version of
the UNIX top program. Ourmon is designed more on
the a model of a traditional distributed SNMP probe
and relies heavily on user programmable BPF and
RRDTOOL-based graphics. However in this paper,
our focus is security and the differences between our-
mon and ntop are not germane. From the intrusion
detection point of view, Qurmon and ntop can be
said to be similar lightweight tools that show anoma-
lous behavior via graphs as compared to an IDS tool
like Snort that does signature-based analysis on ev-
ery packet. Ourmon is lightweight compared to Snort
simply because it only looks at the network headers,
and does not look at the data payload. Thus it 1s
reasonable to expect that if Ourmon cannot process
a certain packet load, Snort’s processing is likely fur-
ther impaired.

In summary, we suggest that there are three points
that we may glean from our test results. We will
briefly discuss them in turn, and mention related
work as appropriate. The last item is the most im-
portant.

e 1. The default BPF buffer size in FreeBSD of
4 kBytes 1s inadequate for a network monitor-
ing system. We suggest a larger buffer of at
least 256 kBytes in keeping with modern sys-
tems. Network administrators should under-

stand that a megabyte buffer may be needed.

From the heuristic point of view, the current

Ourmon probe deployed in the PSU DMZ is run-

ning on an 2 gigahertz Intel Pentium 4, has a

7 megabyte kernel buffer, 60 BPF expressions,
multiple kinds of top N filters, and rarely drops
packets.

e 2. Our BPF filters seem to have a kernel buffer
cost associated with them. and our results sug-
gest that there is a relationship between kernel
buffer space, and the number of BPFs used in
our application. The tests seem to imply that
the BPF mechanism is less costly than the top
N filter. However the BPF mechanism can have
any number of expressions, and the expressions
themselves can vary in complexity. Thus it is
hard to compare the BPF filter mechanism to
the top N filter mechanism in terms of compute
power. However the real computation problem
for the top N system is simply that under attack
it is driven to extremis by random IP addresses
(source or destination). This is because a hash
algorithm will first search for the flow ID, and
then perform an insert if it fails to find the flow.
Consequently random flows always cause an in-
sert. The research question here is this: How
can we deal with boundary conditions caused by
random IP addresses without unduly impacting
efficiency mechanisms meant for normal bursty
flows?

e 3. The final result is simply the observation that
our 2 gigahertz Pentium 4 class computer cannot
capture more than 10% of the minimum-sized
packet flow. Worse, if the computer is expected
to do actual application level work with the data,
the number of packets we capture without loss

falls below 5%.

This last item deserves extended discussion. Con-
sider an IDS system like Snort that wants to run
an arbitrary number of signatures over not only the
packet headers, but the packet data as well, and may
choose to inject the data into a database system.
Clearly per packet processing time can tend to be un-
bounded based on what we want to do with an indi-
vidual packet. Now consider what the security world
tells us about the security principle called weakest
link. For example, Bruce Schneier in a recent book
[16] says: ”Security is a chain. It’s only as secure as

the weakest link.” Therefore an IDS system cannot
afford to miss a single packet, as that packet may be
the one with the slammer worm that will infect an
internal host. Worse perhaps a set of systems coor-
dinated in a distributed DOS attack can launch an
attack on an IDS monitor and first blind it with small
packets and then sneak a one packet worm payload
past it. Packet capture for small packets is clearly an
open security problem.

There is some related work in the area of capturing
small packets. For example, Mogul and Ramakrish-
nan [10] name our phenomenon as receive livelock.
They present improved operating system scheduling
algorithms that can lead to fair event scheduling with
the result that receive interrupts cannot freeze out all
other operating system events.

One must consider that there is not a lot of time
left with 1,488,000 small packets per second. This is
approximately half a micro-second per packet. One
is left with two possibilities. One can either improve
the individual compute performance of various filter
mechanisms or one can attack the problem with par-
allelism.

Two papers on enhancements to the Berkeley
packet filter suggest different ways that might help
BPF performance itself. [5] suggests changing the
BPF to a general purpose compute machine, by al-
lowing backward branches, thus increasing the solu-
tion space for compute problems that might be solved
in the kernel itself. [2] reports improvements to the
BPF using both machine-code compilation and var-
ious optimization techniques, resulting in impressive
performance 1improvements, that could certainly be
used in the current Qurmon implementation. Lastly
[7] reports an interesting hardware parallel engine
based on a flow slicing technique that is focused on
improving Snort’s performance under high-speed con-
ditions.

However making such a system that effectively uses
parallelism and remains cost effective is a challenge.
As a result of our testing, we have adopted the long-
term objective of trying to produce a parallelized
Ourmon system. We intend to explore the porting
and parallelization of Ourmon on the highspeed par-
allel Intel TXP system [1].

6 Acknowledgements

Much thanks to Bart Massey for his criticisms of this
paper. We also thank the IXTA Corporation for their
donation of an IXTA 1600.

References

[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G.
Worich, and H. Wilkinson. The Next
Generation of Intel IXP Network Processors.
Intel Technology Journal, August 2002.

[2] A. Begel, S. McCanne, S. Graham. BPF+:
Exploiting Global Data-flow Optimization in a
Generalized Packet Filter Architecture.
Proceedings of ACM SIGCOMM. September
1999.

[3] CERT Advisory CA-2003-04 MS-SQL Server
Worm. http://www.cert.org/advisories/
CA-2003-04.html, November 2003.

[4] L. Deri and S. Suin. Practical Network
Security: Experiences with ntop, IEEE
Communications Magazine, May 2000.

[5] S. Toannidis, K. Anagnostakis, J. Toannidis, and
A. D. Keromytis. xPF: Packet Filtering for
Low-Cost Network Monitoring. In Proceedings
of the IEEE Workshop on High-Performance
Switching and Routing (MPSR), May 2002.

[6] Karlin, Scott, Peterson, Larry, Maximum
Packet Rates for Full-Duplex Ethernet,
Technical Report TR-645-02, Department of
Computer Science, Princeton University, Feb.

2002.
[7] C. Kruegel, F. Valeur, G Vignka, R.

Kemmerer. Stateful Intrusion Detection in
High-Speed Networks. In Proceedings IEEE
Symposium Security and Privacy, IEEE
Computer Society Press, Calif. 2002.

[8] Leffler, et. al., The Design and Implementation
of the 4.3BSD Umix Operating System,
Addison-Wesley, 1989

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. McCanne and V. Jacobson. The BSD Packet
Filter: A New Architecture for User-level
Packet Capture. In Proceedings of the Winter
1993 USENIX Conference, San Diego, January
1993.

J.C. Mogul and K.K. Ramakrishnan.
Eliminating Receive Livelock in an
Interrupt-Driven Kernel. In ACM Transactions
on Computer Systems, 15(3):217-252, August
1997.

D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, N. Weaver. The Spread of the
Sapphire/Slammer Worm. http:
//www.cs.berkeley.edu/ "nweaver/sapphire.

2003.

Ntop distribution page.
http://sourceforge.net/projects/ntop.
March 2004.

Ourmon web page.
http://ourmon.cat.pdx.edu/ourmon, March
2004.

M. Roesch. Snort - Lightweight Intrusion
Detection for Networks. In Proceedings of the
USENIX LISA ’99 Conference, Novemember
1999.

RRDTOOL web page. http://people.ee.
ethz.ch/ oetiker/webtools/rrdtool. March
2004.

B. Schneier. Secrets and Lies. p. xii. Wiley
Computer Publishing. 2000.

Tcpdump/libpcap home page.
http://www.tcpdump.org, March 2004.

Waldbusser, S. Remote Network Monitoring
Management Information Base Version 2.

IETF. RFC 2021, January 1997.

daily: ports : Thu Jul 10 16:03:00 PDT 2003

bits/ sec

i
b S
z
&
182 00 Ok 00 12 00
B s:h B pep B wehb 0 rep B email B =tra
Max ssh TH Average ssh a2 k Current ssh 110 k
Max p2p 12 M AEFage p2p 10 M CUrrent pap 13 W
Max web 23 M Average web Mmn Current web 15 M
Max ftp 4 M Average fip 457 k Current ftp 43 k
Max email 2N Ave rage ematl 309 k Current email 303 k
Max xtra 0 Average xtra a Current xtra [}

Figure 2: A BPF filter-set graph showing application byte counts

daily: BPF: pkts captured/dropped : Wed Feb 12 11:24:00 PST 2003 :.
Ik ~
1
w 23 k -
| § :
b,
s 20K 5
e 1d k
Oe: 00 12 00 Qe o
B captit) W Crap(2) B Captiz) O brap(z)
Max Capti 34k Average Capti 14 k. Current Capti 17Tk
Max dropd ik k Average dropd 447 Cyrrent dropi 11
Max capt2 0 AVErage Capts 0 Current Capt2 0
Max dropz a Average dropz a current dropz a

Figure 3: The packet capture filter graph showing counts and drops during a slammer attack

10

bits/sec

L37. 204 . 48,235, Mv:ﬁ].mdﬂ. 152, 2599

Top 8 UDP

LB

LA L

1512641
L]
157204, 48, 295, 15433 131 260, 205, 152, 3108
15 05685

1484572

1.5 18

— 0.8 N

=4 A

L]
137204 .48, 2358, 154 1-2 131, 252, 206, 152. 2011

157204, 45, 295, l!'l-'lv;l.:ll..ﬂi.m. 152. Lird

L]
L7204 . 45, 235, 1544-2 131, 252. 208, 1524311

1435459

14TE44E

20795, lﬁ.?ﬂ.i!lﬁ-.}tﬁi.m.ll.lll.l-'!l.ﬂ
475273

- |]
137204, 45, 205, 1550- > 151, 252, 208, 152, LOTT 13128280, 100 #0156- 207 .98 . 103, 229, #9166

140447

Mor Mag 21 16239100 POT 2001

EEaEEEN
o ol o O O R

HEHORAND L3, DF JUNIBO. IT. 1542- rpobr-zeb ie. cat . pde . edu . 2585
HEHORAND L5, DF JUNIBO. IT. 1545- rpobr-zebie. cab , pode . edu . 3100
HEMORAND L5, DF JUNIBO. [T, 1544- rpobrzeb i cab pde . edu . 4311
WEHORAND LS, DF JUNIBO. [T, 1539 rpobr-zebie. cab pdu . edu . 1077
HEHORAND I3, OF JUNIBO. IT, 1541~ rpobrzeb ie. cat o pdu edu, 2011
WEMORAND L3, DF JUNIBO. IT. 154 0= rpobrzeb ie. oot poe o edu . 1085
bordoocabe cedu. $91EBE- 151, 252,60, 11049156 4TS273

131 2828540, 100 . #B156-rbud, ocabe cadu. 49166 422605

13

1512641
1505698

1485458
1494470
1484572
1476446

4226 0§

Figure 4: Top N UDP flow histogram showing a DOS attack

11

