ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

Ourmon versus I XI1A: Monitoring Gigabit Speeds

James R. Binkley, Bart Massey
Computer Science Department
Portland State University
Portland, OR USA
Paper 1D: E00-241341058
Pages: 8
{jrb,bart} @cs.pdx.edu

Abstract—We measure the performance of a modern PC
host running Ourmon, our novel network monitoring sys-
tem. The goal of the analysis is to understand system per-
formance under gigabit load with both maximum-sized and
minimum-sized Ethernet frames. Our testbed consists of
an IXIA 1600 high-speed packet generator that can send
packets at near theoretical speeds, a gigabit switch, and a
roughly 2 GHz AMD PC host. We measure the performance
of the underlying BPF network tap on FreeBSD, as well as
the performance of various application-layer filters used by
the Ourmon system. We show that using a BSD BPF kernel
buffer size of several megabytes permits a workstation using
the Ourmon filters to capture back-to-back maximum-sized
Ethernet packets at gigabit speeds. We also show that when
minimum-sized packets are sent, the BPF/Ourmon system
fails at a relative small throughput rate. This failure ap-
pears to be due to limitations of the hardware and/or net-
work stack rather than the Ourmon system proper. This
result has troubling implications for network management
and intrusion detection systems, given the current frequency
of large volume Internet attacks using small packets.

Keywords—Intrusion detection, Ourmon, IXIA, network
monitoring, network security.

I. INTRODUCTION

The Internet has recently faced an increasing number
of bandwidth-intensive denial-of-service (DOS) attacks.
For example, in January 2003 the Slammer worm [1],
[2] caused serious disruption. Slammer not only wasted
bandwidth and affected reachability, but also seriously im-
pacted the core routing infrastructure. At Portland State,
four lab servers with 100 Mb NIC cards were infected
simultaneously. These servers then sent approximately
360 Mb of small packets to random destinations outside
of PSU. This attack clogged PSU’s external connection to
the Internet and also caused important network monitoring
failures. Due to the semi-random nature of the IP destina-
tion addresses generated by the worm, the CPU utilization
of a router sitting between network engineers and network
instrumentation rose to 100%. Engineers were thus cut
off from central network instrumentation at the start of the

attack.

We recently acquired an IXIA 1600 high-speed packet
generator. The Slammer attack inspired us to test our Our-
mon [3] network monitor system against a set of Gigabit
Ethernet (GigE) flows. Our test flows included maximum-
sized (1518 byte) and minimum-sized (64 byte) UDP
packets as well as rolling IP destination addresses.

The Ourmon network measurement system architecture
consists of two parts: a front-end probe and a back-end
graphic display system. Optimally, these two parts should
run on two separate computers in order to minimize the
application compute load on the probe itself. Our goal in
these experiments has been to test the performance of the
front-end Ourmon probe and its BPF network tap, rather
than the back-end system.

We constructed a test system consisting of the IXIA with
two GigE ports, a line speed GigE switch capable of port-
mirroring, and a UNIX workstation with a GigE NIC card.
The IXIA was set up to send packets from one GigE send
port to the other port. The switch was set up to mirror
packets from one IXIA port to the UNIX host running our
front-end probe.

Like other tools including tcpdump [4], Snhort[5], or
Ntop [6], [7], the Ourmon front-end uses the BPF as a
packet tap. The application takes a stream of unfiltered
packets directly from an Ethernet device, bypassing the
host TCP/IP stack. The interface interrupts on packet in-
put, and hands the trimmed packet (containing all headers
through layer 4) to the kernel BPF filter buffer. The front-
end Ourmon probe reads packets, subjecting each packet
in turn to a set of configuration filters. It thus makes sense
to separately test the performance of BPF and the perfor-
mance of the Ourmon probe component filters.

Our experimental questions include the following:

1. Using GigE with maximum or minimum-sized packets,
at what bit rate can the underlying BPF tap and buffer sys-
tem successfully process all packets?

2. Using GigE with maximum or minimum-sized pack-
ets, what is the smallest BPF kernel buffer size (if any) for



ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

which all packets are successfully processed?

3. Ourmon has three kinds of filters: hardwired C filters,
BPF-based interpreted filters, and a “top-N” flow analy-
sis system. Can we determine anything about the relative
performance of these filters? If we are receiving a high
number of packets per second, which of these filters can
keep up?

4. With the Slammer worm, we know that semi-random IP
destinations led to inefficient route caching in intermediary
routers. What happens when we subject our top-N flow
monitor to rolling or semi-random IP destinations?

In section Il we provide a brief introduction to the Our-
mon system. In section Il we discuss our test setup. In
section IV we present test results, and in section V we pro-
vide analysis and conclusions.

I1. INTRODUCTION TO OURMON

In this section, we explain enough of the Ourmon sys-
tem functionality to understand the performance measure-
ment work reported in sections 11l and 1V. In furtherance
of this goal, we focus on the front-end packet capture sys-
tem. The detailed workings of the Ourmon system are out-
side the scope of this paper. 1

Ourmon is a real-time web-based network monitor.
Ourmon is somewhat similar to SNMP RMON [8] sys-
tems or Ntop. Unlike SNMP RMON, Ourmon does not
present a set of variables encapsulated in a probe accessed
via the SNMP protocol from a management system. In-
stead, Ourmon assumes the port-mirroring functionality of
Ethernet-based switches.

A typical setup may be seen in Figure 1. An Ethernet
switch is configured to mirror (duplicate) packets sent to
its Internet connection on port 1. All packets received via
the Internet port are copied to port 3, which is running the
front-end Ourmon probe on a FreeBSD system with the
BPF packet tap. Thus Ourmon’s probe setup is similar
to that of Snort, which we show running on port 2 of the
switch. The probe system ideally is attached to a border
switch that sees all packets going to and from the Internet.
The back-end Ourmon graphics engine is not performance
critical: it may run on a second computer, which need not
be in the center of a network.

The probe has an input configuration file and an output
file. The input file, called ourmon.conf, specifies various
named filters for the probe to use. Probe output is written
to a small ASCII file called mon.lite that summarizes the
last 30 seconds of filter activity in terms of byte or packet
counts per named configuration filter. This file may be

"However for more information on the Ourmon architecture, please
see: http://ourmon.cat.pdx.edu/our mon/info.html .

X Internet

border router

| port 1

campus
—

Ethernet switch
port 3

port 2

DMZ monitors

Fig. 1. Ourmon network setup

copied over the network to the graphics-engine computer,
which in turn produces various graphic outputs and ASCI|
reports for web display. The back-end graphics engines
produces several kinds of graphics. RRDTOOL-based [9]
strip charts are used with BPF filter-sets and hardwired fil-
ters. Histograms are used to display the top-N flow analy-
sis.

The Ourmon front-end process uses the BPF in two
ways. It uses it to get packets from the kernel BPF buffer
system. It also uses the BPF interpreter in user mode. The
system can utilize multiple BPF filter expressions, group
them together in a BPF filter-set and graph each expres-
sion in the set as a separate line in a single RRDTOOL
strip chart graph.

As an example, here is a simplified configuration for one
BPF filter-set. This filter-set groups the performance of
five application services together, using one BPF expres-
sion each for secure-shell, combined P2P protocols, web,
ftp, and email.

bpf "ports" "ssh" "tcp port 22"

bpf - next "p2p" "tcp port 1241 or
tcp port 6881"

bpf - next "web" "tcp port 80 or
tcp port 443"

bpf-next "ftp" "tcp port 20 or
tcp port 21"
bpf-next "email" "tcp port 25"

Probe output for such a filter over a snapshot period might
look like this:

bpf: ports:5:ssh: 254153: p2p: 19371519
web: 41028782: ft p: 32941: emai | : 1157835

The filter configuration allows the user to name the com-
posite graph “ports”. Five separate user-mode BPF con-
figuration expressions like “tcp port 22” are mapped to
appropriate line labels (“ssh”) in the same graph. Thus
ssh/p2p/web/ftp/email byte counts will all appear in the
same RRDTOOL graph as in Figure 2. The probe executes



ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

the user-mode BPF runtime expressions on the incoming
packet stream from the packet tap and counts matching
bytes. At the sample period timeout, it outputs the mon.lite
file which in this case includes the name of the filter-set
and various (line label, byte count) tuples for each BPF
expression. Multiple BPF filter-sets are possible: many
separate BPF expressions can be executed in the probe ap-
plication. The current PSU DMZ probe software is run-
ning around 60 BPF expressions in sixteen filter-sets and

does not normally lose packets (barring attack periods).

Ourmon also supports a small set of “hardwired” fil-
ters programmed in C and turned on via special names
in the configuration file. For example, a hardwired filter
counts packets according to layer 2 unicast, multicast, or
broadcast destination address types. One very important
filter called the packet capture filter includes statistics on
dropped and counted packets provided directly from the
BPF kernel code. The packet capture filter is fundamental:
it is used to determine when the kernel BPF mechanism is
overloaded in our testing. Typical front-end output in the
mon.lite file for that filter and the layer 2 packet address
type filter might look like this:

pkts: caught 53420 drops: O
fixed cast: ntast: 2337215:
uni cast: 15691896: bcast: O:

The packet capture filter (“pkts™) output means that the
BPF during the last sample period caught 53240 packets
and dropped none. In Figure 3, we show an example back-
end graph for this filter. Drops are in green and captured
packets are in blue. This graph is from the day of a Slam-
mer re-infection. It can be seen that the Ourmon probe (at
the time a Pentium-3) has caught the attack, even though
many packets have been dropped.

The third and last filter class in Ourmon is a “top-N”
flow monitor. The front-end builds up a hash-sorted list
of IP flows over the sample period and writes the top N
(typically around 10) TCP, UDP, and IP (all IP protocols)
flows to the output file. The back-end takes this informa-
tion and produces graphical histograms and text reports. A
flow is defined as a five-tuple consisting of IP source, IP
destination, IP next protocol, L4 source port, and L4 des-
tination port. See Figure 4 for an example top-N report:
we show a DOS attack on a local IT administrator’s host
machine. The attack packets are launched over Internet2
using a spoofed IP source address. Multiple UDP flows,
each around 1.5 Mb, are shown.

In summary, the front-end has three kinds of filters:
hardwired C filters, user-mode BPF filter-sets, and top-N
flow analysis. Intuitively we are interested in the execution
cost of each of these three kinds of filters. While there is
only one top-N flow filter, a user may program any num-
ber of BPF filter-sets: this complicated the analysis some-

what. The packet capture filter is especially important, as
it serves to tell us when we are losing packets. We can view
this as an important indicator that the combined kernel and
probe application system is in failure mode. An important
cause of failure is too much work done at the application
layer, causing the application to fail to read buffered kernel
packets in a timely manner.

I11. EXPERIMENTAL SETUP

The hardware used in our testing consists of three pieces
of equipment:

1. An IXIA 1600 chassis-based packet generator with a
two port GigE line card. One port sends packets and the
other port receives packets.

2. A Packet Engines line speed GigE switch. Three ports
on the switch are used: one for the IXIA send port, one
for the IXIA receive port, and a third port connected to the
UNIX host for mirroring the IXIA flow.

3. A 1.7 GHz AMD 2000 computer system. (The AMD
processor is roughly comparable to a 2GHz Intel Pentium
4 processor.) The system motherboard is a Tyan Tiger
MPX S2466N-4M. The motherboard has two 64-bit PCI
slots: we use a SysKonnect SK-9843 SX GigE card in one
of the slots.

Software used includes Ourmon 2.0 and the BSD lib-
pcap [4] library 0.7.2. The host operating system is
FreeBSD 4.7, running only the Ourmon front-end probe.

We set up the IXIA to send either minimum-sized pack-
ets or maximum-sized Ethernet packets. One port on the
IXIA sent packets through the switch to the other IXIA
port. All packets were UDP packets. The IXIA allows
the user to select an arbitrary packet sending rate up to
the maximum possible rate. It can also auto-increment IP
destination addresses: we used this as an additional test
against the top-N filter.

According to Peterson [10] the maximum and minimum
theoretical packet rates for GigE are as shown in Table I.
We used these values as a measurement baseline. We ob-
served that the IXIA 1600 can indeed generate packets at
nearly 100% of this rate for both maximum and minimum-
sized packets. We used these numbers to make sure that
our Ethernet switch did not drop packets: we hooked both
IXIA GigE ports up directly to the switch and sent pack-
ets from one IXIA port to another IXIA. The IXIA’s built-
in counters at the receive port reported the same packet
counts as at the send port.

The test methodology involves setting up a UNIX host
with a driver script and some set of Ourmon filters. The
front-end probe is started, and the IXIA is configured to
send min or max packets at some fraction of the maxi-
mal rate. Ourmon is configured with some combination



ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

Jul

daily: ports : Thu

10 16:03:00 PDT 2003

=0 M & & H'E_
E ED M -: % ;
LN 0 -
“ i T Ca0 =
..::l 7 PEPT-TH " YPPA _ ....... -
= 10 ML E“- A
I:l i :I iﬂ I i" H : i..'..i .‘ ; ; : ..q‘l!_.T.-_IT "}
1200 & 00 oo Qo Qe 0o 1200
Bl s=h O pzp Bl weh O ftp B email B =tra
Max ssh TH Average ssh 221 k Zurrent ssh 110 k
Max pzp 12 M AVerage p2p 10 M ZUrrent p2p 12 M
Max web 22 M Average web 11 M Zurrent web 18 M
Max ftp 4 M Average ftp 457 k Zurrent fip 42 k
Max email I H average email 204 k Current email 303 k
Max xtra 0 AVErage xtra 0 CUrrent xtra 0
Fig. 2. A BPF filter-set graph showing application byte counts
daily: BPF: pkts captured/dropped : Yed Feb 12 11:24:00 PST 2003 35
23 k «'E_
u 29 k ! Al
o =
- 2
A 20 k &
—E_ g o b : = w.."""'!ﬁ =
0 Kihieagidos e
=
0&: 00 1200 1800 0o oo 0&: 00
W captii) E Cropiz) W captiz) O Cropi2)
Max capti 24 k AVErage capti 14 k Zurrent capti 17 k
Max dropi 15 k Average dropi 447 Zurrent dropi 11
Max captz 0 AVErage captz 0 CUrrent captz 0
Max drop2 0 AVerage drop2 0 Zurrent drop2 0

Fig. 3. The packet capture filter graph showing counts and drops during a Slammer attack

TABLE |
GIGE RATES
bytes/pkt | pkts/s
min 64 | 1488000
max 1518 81300

of hardwired, user-mode BPF, and top-N filters as desired.
The test flows are then started on the IXIA, and the results
observed using the mon.lite output file.

The test script is the Bourne Shell script shown in Fig-
ure 5. The FreeBSD sysctl(8) command is used to set the
kernel BPF buffer size. This is because recent versions of
the PCAP library on FreeBSD will take this information
and automatically size the buffer to be used by the client
application to match the kernel buffer size. This is a rela-
tively new feature and was very handy for our experiment.
It should be noted that the traditional size of the kernel
BPF buffer is typically small (4KB in FreeBSD 4.9) and is
intended for the tcpdump sniffer application. The parame-
ters to the Ourmon probe program tell it to take input from



ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

Top & UDP

1.5 H—

1.5 H

0.5 H—-

bitsfsec

0 H-
| |
137,204 .45, 235, 15423131, 252, 208, 152 . 2599
1512641

]
157,204, 48,235, 1543151252, 206, 152.5109
1505695

u
1537204 .45, 2535, 1544->1531.252. 205, 152.4311

1495459

[ ]
137,204,458, 235, 1539->131. 252, 2058, 152. 1077

How Hag 21 16:239:00 PDT 2001 Ligitel

HEHORANDIZ.0F JUNIEQ. IT. 1542- spotr-zebic. cat s pdu. edu. 2599
HEHORAND I3.0F JUNIEQ. IT. 1543-rpotrzebic.cat spdxaadu. 3109
HEHORANWD I3.0F JUNIEQ. IT. 1544~ spotr-zebic.cat apdu . edu. 4511
HEHORAND I5.0OF JUMIED. IT. 1539-rpotr-zebic catapdu . edu. 1077
HEHORANDIZ.0F JUNIEQ. IT. 1541- spotr-zebic.cat apdua edu. 2011
HEHORANDIZS.0F JUNIEQ. IT. 154 0- :potr-zebic. cat s pdu . edu. 1099
tvdiocate.edu.49166->151.252.60.110.49156 475273

151.252,860.110,49156- b vl ocate edu. 43166 422605

L IR B R L

|||||||| |||||||| |||||||| |||||||| 0 H

[ ]
157.204.45.2535. 1541->1531.252.205. 152.2011

— 0.5 H

1454572

1537204, 458,255, 1540->1531.252. 205, 152. 1099

1476446

Z07.953.103.229,49166->151.252.60.110.49156
4752TE

131,252,580, 110.49156-207.93, 103,229, 49166
422603

1512641
1505693
1495459
14494470
1484572
1476446

Fig. 4. Top-N UDP flow histogram showing a DOS attack

#!1/ bi n/ sh
BSI ZE=1048576
sysctl -w debug. bpf buf si ze=$BSI ZE
sysctl -w debug. bpf _maxbuf si ze=$BSI ZE
.Jourmon -a 5 -1 skO -m/dev/tty \

-f . /ournon. conf

Fig. 5. Test script

a local configuration file, dump the output information to
the screen every five seconds and use the SysKonnect card
as the input interface.

Tests were run using either maximum-sized or
minimum-sized packets. If we dropped packets, we at-
tempted in every case to eliminate packet drops by in-
creasing the kernel BPF buffer size (BSIZE above). If that
failed, we then reduced the IXIA’s send rate until all pack-
ets were transmitted.

For testing, we identified five interesting categories of
Ourmon filters and constructed filter tests for these cate-
gories.

null: The packet capture filter cannot be turned off, and is
the only remaining statistic when all Ourmon filters (hard-

wired, etc.) are removed from the configuration.
hard: The hardwired C filters as a group.
bpf: BPF filters as one or more filter-sets.
top-n: The top-N filter mechanism.
combo: A simple combination of all filters.

The null filter tells us whether or not the BPF in the
kernel was losing packets, as its count/drop information is
taken from the operating system. The hard, bpf, and top-n
filter categories were tested individually in order to deter-
mine if the filter type itself had an impact on the overall
performance. The six hardwired C filters available at the
time of testing were used in the tests. The bpf tests were
based on a filter-set that had 4 simple filters in it. The in-
dividual BPF expressions were configured to capture TCP
ports that could not match the output of the IXIA (UDP
packets): it seemed reasonable for BPF expressions to al-
ways fail to match.

Repeatedly testing the top-N mechanism with the same
IP flow would yield no new information. Therefore, for
the top-N test we used a rolling IP destination setup where
each subsequent UDP packet within a set of 1000 or 10000
had a different IP destination. This could be said to be a
rough simulation of the Slammer worm, with its variation



ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

TABLE 1l
MAXIMUM PACKET TESTS

TABLE Il
MINIMUM PACKETS AND NULL FILTER

test | sets | flows | bufsz (KB) | drops (%)
null 128 0
hard 128 0
top-n 1000 128 0
top-n 10000 — 80
bpf 1 128 0
bpf 4 128 0
bpf 8 128 20
bpf 8 7168 0
combo 1| 1000 7168 0

in IP destinations.

bufsz (KB) | thresh (Mb/s)

32 53.33

128 68.52

256 76.19

512 76.19
TABLE IV

HARDWIRED AND BPF TESTS

test | sets | rate (Mb/s) | drops (%)
hard 76 0
bpf 1 68 0
bpf 2 53 0

IV. TEST RESULTS

Test results fall into two basic categories, which are re-
ported separately: tests with maximum-sized packets, and
tests with minimum-sized packets.

A. Maximum Packets

In this set of tests, packets were always 1518 bytes, the
normal maximum MTU for Ethernet packets. (This works
out to a 986 Mb flow of UDP packets). Our tests involved
the null, hard, top-n, bpf, and combo categories as de-
scribed in section 1Il. The test results are summarized in
Table II.

The flow rate was set to maximum: the drop rate there-
fore shows packets lost at gigabit speeds. In the null
case, the configuration almost worked with the default
BPF buffer size of 4 KB. However, some packets were lost
at a 30 second interval. This may have had something to
do with an operating system timer. Increasing the kernel
BPF buffer size to 128 KB resulted in perfect transmission,
even after adding in the hardwired filters.

The top-N filter worked with no loss at 1000 flows and
completely failed at 10000 flows. Larger BPF buffers did
not help (dashed table entry). This is the most significant
failure case with maximum-sized packets. Decreasing the
IXIA flow-rate to 45 Mb resulted in perfect transmission.
For the bpf tests, we increased the number of filters to 8
sets (32 BPF expressions) before running into some loss.
At that point, we increased the kernel BPF buffer size. We
found that a very large buffer of 7 MB could indeed get us
back to lossless transmission. With the combo configura-
tion (hard + top-n + 1 bpf set) we did not experience any
loss: note however that we used only 1000 flows with the
top-N filter.

B. Minimum Packets

Attempts to capture maximum-rate flows of minimum-
sized packets (64 bytes) uncovered serious problems. We
therefore report our results as a series of small experi-
ments: each experiment focuses on a different test domain.

B.1 Null Filter Only

It was not always possible to capture all packets even in
the null filter case. Instead we attempted to determine the
effect of the kernel BPF buffer size on drop rates as shown
in table I1I.

A buffer size of 256 KB appears optimal: at this size
the system begins to drop packets at 76 Mb. Larger kernel
buffers do not improve the result. Of course the most im-
portant aspect of this test is that we cannot capture more
than around 10% of the GigE stream without loss. (Note
that packet overhead for minimum packets results in a
maximum flow of around 760 Mb.)

B.2 Individual Filter Types

Having determined baseline drop rates using the null fil-
ter, we could now proceed to measure the impact of other
filter types. In the BPF filter-set tests, we tried both one
and two filter-set configurations. In the top-N filter test,
we varied the number of simultaneous flows. Table IV be-
low shows the results for the hard and BPF tests. Table V
shows the results for the top-N tests.

Hardwired filters appear to have no impact on perfor-
mance. The bpf filters have some performance impact,
visible even at a modest 76 Mb transfer rate. At this trans-
fer rate, 1000 unique flows is stressful for the top-n filter.
However reducing the flow rate to 45 Mb allows the filter
to keep up with the data. Unfortunately, 10,000 flows can-



ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

TABLE V
MINIMUM PACKETS—TOP-N TESTS

flows | thresh (Mb/s) | bufsz (KB) | rate (Mb/s)

1 0 256 76

100 1 256 76

1000 25 256 76

1000 0 256 45

10000 50 — —
TABLE VI

MINIMUM PACKETS—ALL FILTER TYPES

rate (Mb/s) | drops (%)
76 44
68 37
53 18
45 3
38 0

not be handled with any kernel buffer size at any measured
transfer rate. Subsequent work on hashing techniques has
improved upon this result, but the top-n filter is still quite
expensive.

B.3 Combination filtering

In this experiment we measure the combo filtering pre-
viously discussed. Here we vary only the flow-rate, hold-
ing the buffer size constant at 256 KB and the number of
flows constant at 1000. Table VI shows the results.

We see that we must reduce the flow-rate to roughly one-
half maximum in order to prevent drops. This is probably
because of the impact of 1000 flows on the top-N filter.
The filters here are in truth fairly minimal, as there is only
one BPF filter-set. In reality one would want more filter-
sets to get better traffic information. The bottom line is that
we must reduce the flow-rate to 38 Mb for even a modest
amount of work to be performed without packet loss.

V. CONCLUSION

Our paper introduces Ourmon, a new monitoring tool,
and discusses experiments aimed at measuring the perfor-
mance of both the underlying kernel BPF filter system and
Ourmon front-end filter systems.

The measurement system closest to Ourmon is probably
Ntop [6]. Ntop is a single program intended to run on desk-
tops: it can be thought of as a network version of the UNIX
top program. Ourmon is designed more along the lines
of a traditional distributed SNMP probe, with a distinct
separation between capture and display. It relies heavily
on user-programmable BPF filters and RRDTOOL-based

graphics. In this paper, our focus is chiefly on security
impacts of measurement. Thus, the differences between
Ourmon and Ntop are not as germane.

From the intrusion detection point of view, Ourmon and
Ntop can be said to be similar lightweight tools that show
anomalous behavior via graphs. In contrast, an IDS tool
like Snort does signature-based analysis on every packet.
Ourmon is lightweight compared to Snort: it looks only
at the layer 1-4 network headers and entirely ignores the
data payload. It is thus reasonable to expect that Snort’s
processing will be impacted even more than Ourmon’s by
high packet loads.

We can draw some interesting conclusions from our ex-
perimental work.

1. The default FreeBSD BPF buffer size of 4 KB is in-
adequate for a network monitoring system. We suggest a
larger default buffer of at least 256 KB: this size should
not unduly burden modern systems. Network administra-
tors should understand that a multi-megabyte buffer may
be needed. As a point of reference, the current Ourmon
probe deployed in the PSU DMZ is running on an 2 GHz
Intel Pentium 4 with an 8 MB kernel buffer. It runs 60
BPF expressions and multiple kinds of top-N filters, yet
only drops packets during severe TCP SYN attacks.

2. Our BPF filters seem to have a kernel buffer cost asso-
ciated with them. Our results suggest that there is a posi-
tive relationship between the amount of kernel buffer space
needed to mask filter latency and the number of BPFs used
in our application. Our tests seem to imply that the BPF
mechanism is less costly than the top-N filter. However
the BPF mechanism can have any number of expressions,
and the expressions themselves can vary in complexity. It
is thus hard to compare the BPF filter mechanism to the
top-N filter mechanism in terms of compute power.

The real computation problem for the top-N system is that
it is driven to extremis under attack attempting to cope with
random IP addresses (source or destination). The hash-
based top-N algorithm will first search for the given flow
ID, and then perform an insert if it fails to find the flow.
Consequently random flows always cause an insert. This
leads to an interesting research question: How can we deal
with boundary conditions caused by random IP addresses
without unduly impacting efficiency mechanisms meant
for normal bursty flows?

3. Our 2 GHz Pentium-4 class computer cannot capture
more than 10% of the minimum-sized packet flow. Worse,
if the computer is expected to perform actual application-
level work using the data, the number of packets we cap-
ture without loss falls below 5%.

This last item deserves extended discussion. Consider
an IDS system such as Snort. An IDS wants to run an ar-



ACM SIGCOMM INTERNET MEASUREMENT CONFERENCE 2004

bitrary number of signatures over both the packet headers
and the packet data, and may choose to inject its measure-
ment results into a database system. Clearly per-packet
processing times may become quite large in this scenario.

Now consider the security principle known as weakest
link. For example, Bruce Schneier writes [11]: “Security
is a chain. It’s only as secure as the weakest link.” An
IDS system incurs a significant risk when it drops a single
packet, as that packet may be the one with the Slammer
worm that will infect an internal host. Worse, a set of co-
ordinated systems might launch a distributed DOS attack
against an IDS monitor, first blinding it with small pack-
ets and then sneaking a one-packet worm payload past it.
Packet capture for small packets at high rates is an impor-
tant open security problem.

There is some related work in the area of capturing small
packets. For example, Mogul and Ramakrishnan [12] de-
scribe the phenomenon seen here as receive livelock. They
present improved operating system scheduling algorithms
that can lead to fair event scheduling, with the result that
receive interrupts cannot freeze out all other operating sys-
tem events.

One must consider that there is not a lot of time left
with 1,488,000 small packets per second: this works out
to approximately 0.7 us per packet. Some sophisticated
approach, such as improving the individual compute per-
formance of various filter mechanisms or applying paral-
lelism, is needed to attain adequate performance,

Some recent work on enhancements to the BPF suggests
alternatives for improving BPF performance. The xPF sys-
tem [13] expands the BPF to a general purpose computing
machine by allowing backward branches. This provides
the opportunity to enhance BPF performance by running
filters entirely in-kernel. The BPF+ system [14] optimizes
BPF performance using both machine-code compilation
and various optimization techniques. This results in im-
pressive performance improvements that we would like to
exploit in Ourmon. A recent IDS [15] contains an interest-
ing parallel hardware engine based on a flow slicing tech-
nique: this hardware reportedly improves Snort’s perfor-
mance under high packet loads. However making such a
system that effectively uses parallelism and remains cost
effective is a challenge.

As aresult of our testing, we have adopted the long-term
objective of trying to produce a parallelized Ourmon sys-
tem. We intend to explore the porting to and paralleliza-
tion of Ourmon on the high speed parallel Intel IXP [16]
system.

VI. ACKNOWLEDGEMENTS

This work would not have been possible without the
generous donation from the IXIA Corporation of an IXIA
1600 tester. We also wish to thank our graduate students
Subha Singaram and Gayathri Nagabhushan for their help
with this project.

REFERENCES

[1] “CERT Advisory CA-2003-04 MS-SQL Server Worm,” Nov.
2003, URL http://www.cert.org/advisories/
CA-2003-04_html accessed 03 May 2004.

[2] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stani-
ford, and N. Weaver, “The spread of the Sapphire/Slammer
worm,” 2003, URL http://www.cs.berkeley.edu/
“nweaver/sapphire accessed 03 May 2004.

[3] J.Binkley, “Ourmon web page,” URL http://ourmon.cat.
pdx.edu/ourmon accessed 05 May 2004.

[4] “Tcpdump/libpcap home page,” URL http://www.
tcpdump.org accessed 03 May 2004.

[5] M. Roesch, “Snort—Lightweight intrusion detection for net-
works,” in Proceedings of the USENIX LISA '99 Conference,
Nov. 1999.

[6] L. Deri and S. Suin, “Practical network security: Experiences
with ntop,” |IEEE Communications Magazine, May 2000.

[7] “Ntop distribution page” URL http://sourceforge.
net/projects/ntop accessed 03 May 2004.

[8] S. Waldbusser, “Rfc 2021: Remote network monitoring manage-
ment information base version 2,” Jan. 1997.

[9] “Rrdtool web page,” URL http://people._ee.ethz_.ch/

“oetiker/webtools/rrdtool accessed 03 May 2004.

S. Karlin and L. Peterson, “Maximum packet rates for full-duplex

Ethernet,” Tech. Rep. TR-645-02, Department of Computer Sci-

ence, Princeton University, Feb. 2002.

B. Schneier, Secretsand Lies, Wiley Computer Publishing, 2000.

J.C. Mogul and K.K. Ramakrishnan, “Eliminating receive live-

lock in an interrupt-driven kernel,” ACM Transactions on Com-

puter Systems, vol. 15, no. 3, Aug. 1997.

S. loannidis, K. Anagnostakis, J. loannidis, and A. D. Keromytis,

“xPF: Packet filtering for low-cost network monitoring,” in Pro-

ceedings of the IEEE Workshop on High-Performance Switching

and Routing (MPSR), May 2002.

A. Begel, S. McCanne, and S. Graham, “BPF+: Exploiting global

data-flow optimization in a generalized packet filter architecture,”

in Proceedings of ACM SSIGCOMM, Sept. 1999.

C. Kruegel, F. Valeur, G Vignka, and R. Kemmerer, “Stateful

intrusion detection in high-speed networks,” in Proceedings|EEE

Symposium Security and Privacy, 2002.

M. Adiletta, M. Rosenbluth, D. Bernstein, G. Worich, and

H. Wilkinson, “The next generation of Intel IXP network pro-

cessors,” Intel Technology Journal, Aug. 2002.

[10]

[11]
[12]

[13]

[14]

[15]

[16]



