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Abstract

Ourmon is a near real-time network monitor-
ing and anomaly detection system that cap-
tures packets using port-mirroring on Ethernet
switches. It primarily displays data via web
graphics using either RRDTOOL stripcharts or
via histograms for top talker style graphs. We
have developed a theory that network scanning
launched primarily by worm programs including
TCP and UDP scanners may be caught by mon-
itoring network control data including TCP con-
trol packets (SYNS, FINS, RESETS) and ICMP
errors, or by monitoring certain carefully chosen
metadata such as the flow count itself. In this pa-
per we concentrate on TCP and present a ”flow
tuple” focused on TCP control data along with
some new metrics and a novel reporting scheme
called a port signature report. We illustrate our
ideas with examples of attacks as shown by the
Ourmon system, and relate those examples to
our control theory ideas.

1 Introduction

Recently John McHugh and Carrie Gates at
CERT [7] have presented a theory of anomaly
detection based on locality. Multiscale locality
has proven to be a key to understanding a wide
variety of physical and other phenomena. Lo-
cality of program counter and data references
turned out to be the key to the design of effec-
tive memory paging systems [2]. In this case, the
key locality concept is the “working set,” a set of
memory pages that if maintained in the physical
memory of the computer will allow the program
in execution to make progress without excessive
page faulting. This work was in response to the
observation that on some time sharing comput-
ers, page faults occurred so frequently that the
CPU was mostly idle, waiting for pages contain-
ing the next data or instructions to be referenced
to be loaded into memory. This phenomenon,
termed thrashing, led to a variety of models of
program behavior, the understanding of which
allowed efficient implementation of paged mem-



ory systems.

The thesis of the earlier paper was that lo-
cality principles are a key to distinguishing and
understanding “normal” behavior in computer
systems that may be subject to attack by out-
siders. We feel that an understanding of normal
is an important step towards understanding that
portion of abnormal behavior that represents the
actions of malicious users of the system. Our
long term goal is to develop a sufficient under-
standing of the systems with which we work so
that we can identify properties that are neces-
sary parts of certain malicious activities, and,
with luck, properties that are sufficient to indi-
cate such activities.

In general, locality is manifest when the be-
havior of the system can be represented by rela-
tively compact clusters in some dimensions of a
multidimensional measurement space. Note that
we have not used the terms “benign” and “mali-
cious” as surrogates for normal and abnormal. In
this context, abnormal means unusual. In some
cases, as we attempt to understand why local-
ity appears to characterize normal behavior, we
may be able to make a case that certain classes
of malicious behavior are necessarily abnormal in
that they will necessarily fail to meet the “nor-
mal” clustering criteria. On the other hand, we
may not be able to identify such behavior with
absolute certainty.

In network terms, one may baseline local net-
work data, especially control data, and conse-
quently observe significant anomalies in a base-
line, thus detecting that network attacks are oc-
curing. Furthermore, this principle of locality is
something that can be built into network-based
anomaly detection systems. Locality is repre-
sented in terms of network address clustering,
in the temporal behavior of sources both inter-
nal and external to the network, and in making

careful distinctions between normal amounts of
control packets, and anomalous amounts of con-
trol packets. Ourmon, the subject of this paper,
is another lens through which we can perceive
manifestations of locality.

Ourmon [8] is a network monitoring system
that is somewhat akin to systems like SNMP
RMON [17] in that it attempts to capture net-
work data including top talker graphs of tradi-
tional flows, packet counts, and counts of general
protocol data including TCP versus UDP traf-
fic, etc. It runs in thirty second sample periods
using various filters that in general capture in-
teger counts or top talker tuple lists. Ourmon
is divided up architecturally into two programs,
a front-end and a back-end. The front-end uses
some hardwired and some user-defined filters for
capturing data and placing condensed and sum-
marized data in a few small ASCII files. These
files are then passed at the sample period time
to the back-end which graphs the data on the
web or analyzes it in reports. Thus Ourmon is a
near real-time system, as the worst case delay in
front-end to back-end processing is never more
than one minute. In this paper we will mostly
focus on ourmon’s TCP-oriented anomaly detec-
tion capabilities. !

Ourmon has two fundamental techniques for
displaying data on the web in a graphical fashion:

1. RRDTOOL [10] stripcharts based on in-
teger counters. Ourmon uses RRDTOOL
to construct graphs based on various indi-
vidual integer counters. The filter mech-
anism here is typically based on a user-
programmable technique where multiple
Berkeley Packet Filter (BPF) [6] expres-
sions can be grouped in a single RRDTOOL

!For more ourmon architectural details, please see:
http://ourmon.cat.pdz. edu/ourmon/info.html.



graph. This is a major graphical tool in the
Ourmon system and is often useful for look-
ing at network-wide information and meta-
data. For example, we use it to graph the
total numbers of TCP control packets in our
network. See Figure 1 for an example of an
BPF/RRDTOOL graph.

2. Top talker lists of information presented as
histograms or reports. Top talker lists typ-
ically have some form of tuple associated
with them that is either keyed on an individ-
ual IP source address or on the traditional
IP flow tuple of (IP source, IP destination,
IP protocol, L4 source port, L4 destination
port). Ourmon has numerous instances of
such tuples including conventional flow tu-
ples, and control count tuples such as the
SYN tuple discussed below. See Figure 2
for an example.

At PSU, during Fall 2003 we noticed that
the total count of ICMP flows, which was not
graphed at that time, had increased from 100’s
of flows to over 100000 flows per sample period
(30 seconds). Students had returned from sum-
mer break and had brought a mass infection of
the Welchia/NACHI worm [15] back to campus.
This particular worm includes a ping scanner to
scan for additional IP addresses, thus many such
worms raised the overall ICMP flow count. It
should be noted that this was a case of no par-
ticular host standing out by itself in terms of net-
work traffic. What stood out was the increase in
network-wide traffic for ICMP.

Of course, this is an excellent example of the
principle of locality. We knew that ICMP flows
at PSU were typically on the order of 100’s per
period and should not be 100000 per sample pe-
riod. We were also alerted to a network-wide

anomaly, not just an anomaly for a single host.
This particular incident caused us to begin our
recent work to steer Ourmon in the direction of
becoming an anomaly detection system as well
as a general network monitoring system. It also
led us to propose two network anomaly system
design principles that we believe are of general
importance and have found to be profitable in
our attempts to capture network intrusions both
from a network-wide and per source IP host per-
spective. The two principles are as follows:

1. In anomaly detection, it is useful to focus
on network control data. Intuitively there
should be fewer control packets than data
packets, and errors are significant. For TCP
this means SYNS, FINS, and RESETS as
well as ICMP errors. For UDP this prin-
cipally means ICMP port unreachables al-
though other ICMP errors are useful as
well. As an example, we have a top talker
mechanism that captures TCP SYN attacks
and a BPF graph that shows network-wide
counts of TCP SYNS, FINS, and RESETS.
In general, we can use our BPF/RRDTOOL
mechanism to graph network-wide behavior,
and use various top tuples to look at the be-
havior of individual TP sources.

2. Carefully chosen metadata may also be of
use for anomaly detection. For example,
we originally chose to show the largest top
talker IP flows as this is a very conventional
way to display flow information. As it turns
out, we should also have been graphing the
number of flows (as seen below in figure
3). In the previous category we mentioned
top talker SYN counting for individual IP
sources. We also developed an additional
metadata grapher that simply counts the



total number of suspicious systems sending
many TCP SYNS, where we arbitrary de-
clare that a certain number of SYNS - FINS
per count period is ”interesting”. As a re-
sult, we have observed what appear to be
coordinated SYN scanning sweeps that orig-
inate from many IP sources at a time. This
is shown in figure 4.

We should point out that Ourmon at PSU is
deployed in our DMZ. Our university has around
26000 students. We use Ourmon to look at our
external Internet traffic for a network with over
5000 hosts on it, 300+ Ethernet switches, and
10 routers plus external connections to Internetl
and Internet2. All the graphs presented here
come from our central DMZ monitoring station.

Our paper is organized around recently devel-
oped anomaly detection mechanisms based on
the general locality theory. We illustrate these
mechanisms with graphs based on various at-
tacks. We neglect UDP and ICMP in favor of
TCP due to space limitations. In section 2 we
will look at TCP-based mechanisms that illus-
trate our control theory notion. In section 3 we
look at some metadata examples including our
worm counting mechanism. In section 4 we look
at validation work coupled with the port signa-
ture report. In the last sections we present re-
lated work, and our conclusions.

2 TCP Anomaly Detection

In this section, we are going to look at two fil-
ter mechanisms that are both focused on TCP
anomaly detection. We begin with Figure 1,
where we show a daily (last 30 hours) picture
using three BPF expressions in a RRDTOOL
stripchart. This picture shows the total TCP
SYN, FIN, and RESET packet counts for PSU

traffic to and from the Internet for a period
slightly over thirty hours. As usual with RRD-
TOOL graphs, "now” (10:00 AM) is on the right
hand side. The stripchart moves to the left ev-
ery thirty seconds. The top curve is the number
of SYNs and the size of this curve has basically
suppressed the FIN and RESET count lines, bar-
ring a small 6:00 am spike in the RESET line.
Clearly the spikes in the SYN line indicate one
set of major anomalies.

These attacks were caused by large-scale SYN
attacks coming from the Internet into PSU dur-
ing the time period.? At the bottom the graph
shows that the variation in average SYNs to
maximum SYNS was about 1 to 3. In other
words a single attack could nearly triple the
number of incoming SYNS. From experience we
know that PSU’s overall traffic is typically di-
urnal with peaks in the early afternoon. This
graph makes a strong suggestion that the num-
ber of SYNS during the entire period at PSU is
too high, and that the network is seeing a fair
number of TCP SYN scans. One might expect
that the number of SYNS and FINS would some-
how march together even if there were less FINS.
Of course, long-term baselining can help resolve
this issue, but as this graph is new no such base-
line currently exists. We should also point out
that the distributed attack here is the same as
shown in Figure 3 and Figure 4, which we will
discuss later in our metadata section.

Our second TCP filter is based on a new top
talker tuple, which is loosely modeled on our
original flow list 5-tuple as found in Cisco’s net-
flow tool [1]. We call this the SYN list tuple. It
has a number of outputs or views in the back-

2We believe these attacks are distributed and coordi-
nated SYN attacks that are looking for exploitable Mi-
crosoft systems.



end including a histogram sorted by the top IP
source senders of SYNS (see Figure 2 ), the worm
counter, and the port signature report, covered
in section refvalidation. The tuple stored by the
SYN list has the following rough form:

(IP source address, SYNS, SYNACKS,
FINSSENT, FINSBACK, RESETS,

ICMP ERRORS, PKTSSENT, PKTSBACK,
port signature data)

The logical key in this tuple is an IP source ad-
dress. SYNS, FINS, and RESETS are counts of
TCP control packets. SYNS are counts of SYN
packets sent from the IP source, and SYNACKS
are a subset of only those SYNS sent with the
ACK flag set. FINS sent both ways are counted.
RESETS are counted when sent back to the IP
source. ICMP ERRORS refers to certain ICMP
errors like unreachable or TTL errors returned
by receivers. The PKTSSENT counts the total
packets sent by the IP source, and PKTSBACK
counts the total pkts returned to the IP source.
There is also a small fixed set of sampled TCP
destination ports that we will discuss more be-
low in section refvalidation. This tuple captures
the idea of two-way data exchange in a number
of ways including counters PKTSSENT and PK-
TSBACK, FINS BACK, RESETS, etc.

There are currently two weights associated
with the SYN tuple, which we call the work
weight, and the worm weight. The work weight
is computed per IP source as follows:

(Ss + Fs + Rr)/Tsr

and is expressed as a percent. The rough idea
here is that we take control packets likely to
be used in an anomalous way and divide that
count by the total number of TCP packets. Ob-
viousally 100% here is a bad sign and implies a

true anomaly of some sort. Such a value is typi-
cally associated with a scanner or worm. On the
other hand, if ordinary data packet exchange has
occured, the weight will be lower and very well
may be 0% for classic long-lived connections like
FTP. FINS sent are included to capture FIN only
scans. Resets returned are included because they
are generated by attacks and we want an attack
with SYNS producing RESETS to tend to 100%.
We will discuss the worm weight in subsequent
sections.

In the top SYN graph (Figure 2) our his-
togram labels show the IP address, followed by
the FIN (f), RESET (r), total count (t), and
work weight plus an additional ”worm” flag. The
worm flag is based on the work weight metric and
is set to "W if that metric is 90% or more. In
the graph the line below the FIN and RESET
counts shows the SYN count used for sorting.

A few packets of (simplified) tcpdump output
for the top host in the graph are as follows:

131.252.X.Y.3885 > 10.0.0.1. : S
131.252.X.Y.3886 > 10.0.0.2.445: S
131.252.X.Y.3886 > 10.0.0.3. : S

In other words, the PSU host in question is
performing a port 445 (Microsoft file share) TCP
SYN scan of external IP hosts. It has a virus and
is searching for other hosts to infect.

Our first generation SYN tuple merely
counted SYNS, FINS, and RESETS, and sorted
on SYNS. We quickly learned that in general
many SYNS and no FINS was a sign of an in-
fected host. However we also found that we had
false positives in the sense that a few IP hosts
would commonly register work weights in a range
less than 70% but higher than say 10%. Your av-
erage garden-variety worm would have a higher
value, typically 100%, but it was not clear at first



the reason for intermediate range values. We
also performed a modest statistical analysis of
multiple million packet samples gathered both
during ”"normal” and ”abnormal” times where
abnormal meant large external SYN attacks on
PSU were underway (as seen by our tworm graph
in Figure 4). This showed that in general hosts
tender to cluster around low weights, or high
weights (during attack periods), but medium
weights (between 30..70%) were much less com-
mon.

Eventually we determined via manual means
(tcpdump for ports and ngrep for content) that
the majority of hosts in the middle range were
running P2P clients of various forms. P2P sys-
tems may generate high rates of SYNS with less
successful numbers of connections with peers,
hence they may have non-zero work weights.
However in general they are doing some work,
hence medium (and low) range work weights are
common. Researchers in general should be aware
that P2P clients may cause false positives if one
simply counts SYNS — although we found that in
general with our particular metric more modern
P2P applications like BitTorrent (compared to
Gnutella) have lower but non-zero work weights
(say 20% or less). Some apps like Gnutella have
higher work weights (say 30% as an average, al-
though higher is possible).

The SYN list graph can at times be paired
with the BPF TCP control graph. The BPF
control graph presents a network-based point of
view and the SYN list gives individual IP sources
generating high rates of SYNs. We have seen ex-
amples where a spike in the control graph can be
matched up to a log entry in the SYN list at the
same time. It is also often the case that many IP
sources are generating small numbers of SYNS at
the same time, thus raising the SYN line on the
BPF graph, but not showing any obvious evi-

dence in the SYN list.

The SYN list graph ultimately has been found
to be frustrating simply because it did not pro-
vide enough data about any individual host. It
would indicate a host was interesting, but one
still had to resort to a sniffer for details. Also
it did not provide any help in information cor-
relation during large scale coordinated attacks.
As a result we enhanced the earlier form of SYN
tuple to include a small set of destination ports
and packet counts for those destination ports,
thus laying the groundwork for our port signa-
ture report, which we will return to below.

3 Metadata Examples

In this section we look at two useful anomaly
detection mechanisms that are "metadata” by
which we mean second-order graphs derived
computationally from existing filters. Both fig-
ures in this section show the same distributed
TCP SYN attacks coming into PSU from multi-
ple IP sources over the same time period. These
attacks may have used the agobot (or phatbot)
tool and involved remotely controlled TRC chat
servers [14].

Figure 3 which we will call the flow count
graph shows the count of flows for IP (all IP
flows), TCP, UDP, and ICMP flows respectively.
We assert that it is reasonable to view the count
of flows in a network as part of the control plane
of the local network. Typically top talker flows
would show the top flows in terms of bit rate.
Here we instead show the total count of all the
flows during the sample period and represent the
count for the four kinds of flows in an RRD-
TOOL graph.

In this case, we can see a number of spikes in
the count of TCP flows. In general, baselined



RRDTOOL data has shown that PSU traffic in
terms of the TCP flow count is diurnal, with
perhaps 1k flows at night and 2k flows during
the day. Here we see one spike at 9:30 PM on
the previous day that has doubled the number
of flows to around 4k. Of course in this case we
have "flows” of one packet as PSU’s IP destina-
tion address space ( a class B ) is being walked by
multiple external IP sources. This graph shows
a total of 5 TCP spikes, and also one UDP event
as well.

Figure 4 which we will call the worm count
graph is probably our most visually interesting
artifact. It is a count of suspicious TCP SYN
scanners that is produced as a side effect from
the previously mentioned top talker SYN list.
In this case our front-end takes the entire sorted
list, and produces a subset of ”interesting” SYN
tuples primarily including hosts that satisfy the
following worm weight:

S, —F,>C

We simply subtract the FINS returned from
the SYNS sent and only store the tuple if C, a
constant, is greater than some manually config-
urable constant (which is configurable and de-
faults to 20 in the current system). We justify
C in an intuitive sense by pointing out that in
general C should be chosen as large enough that
any given IP source in the set is generating more
SYNS than FINS, thus one can claim any IP
source satisfying C is in some sense "noisy”.

Thus the tworm graph consists of IP sources
that have satisifed the worm weight. There are
three counters shown in the tworm graph, 1. to-
tal IP worm weight sources, 2. ”us” (meaning
hosts that belong to the home network, PSU),
and 3. "them” (hosts that are external to the
home network). The resulting graph shows a

number of sustained attacking periods with IP
source counts in the worst case around 1k3. We
were incredulous at first as to whether or not
this filter worked, but the curves produced by it
have been verified by hand using tcpdump, and
by other graphs including the flow count filter
pictured below and the RRDTOOL/BPF graph
of TCP control packets (Figure 1). We believe
it is producing credible results.

Our subtractive metric seems to work simply
because when large attacks are not taking place
we are ignoring large numbers of small produc-
ers of SYNS and FINS (most applications) and
hence establish a stable and small count baseline
that may consist of some P2P apps and some sin-
gle host infections. When an attack occurs, typ-
ically most of the attacks produce SYNS with
few or no FINS, and hence raise the curve.

The exact value of the constant C is debate-
able and may be network dependent. Our net-
work is open and has many P2P users and
a higher value may be more appropriate. A
more conservative network might want to have a
smaller less noisy value.

4 Validation and TCP Port
Signatures

In this section we wish to discuss our validation
and testing of the TCP-based work mentioned
previously. We do this in the context of a novel
reporting technique called a port signature re-
port. This report consists of that subset of the
SYN tuple set that barring a few exceptions sat-
isfies the worm weight. It includes metrics like
the work weight and other metrics as well includ-

3 Agobot is capable of spoofing IP source addresses and
thus there really isn’t any known way at this time to tell
how many true IP hosts were involved in these attacks.



ing a small set of 1 to 10 port tuples which pro-
vide information about TCP destination ports.
Thus this gives us a limited view of ports used
by the IP source during the sample period. It
also presents information in such a way that at-
tacks from multiple IP sources can be correlated.
In this section we will discuss the port signature
in more detail using a tabular representation of
the port report, and also discuss our validation
efforts in terms of both the summarized port re-
port and a small Microsoft-oriented application
study we performed to help us better understand
what we were seeing in the port report.

Before we present the port signature and re-
lated efforts aimed at validation, consider the fol-
lowing statement from Jung, et. al.[4]: ”Conse-
quently our argument is nearly circular: we show
that there are properties we can plausibly use
to distinguish likely scanners from non-scanners
in the remainder hosts, and we then incorpo-
rate those as part of a (clearly imperfect) ground
truth against which we test an algorithm we de-
velop that detects the same distinguishing prop-
erties”. Ultimately in a very narrow sense, it is
important to remember, our work weight system
catches anomalies, as for example in the limited
scope of a system sending SYNS and not getting
any packets back (barring resets). 100% indi-
cates a true anomaly, but ultimately we do not
know if said system is a scanner, a misbehaving
program, or a misbehaving worm! We cannot
see intent — we can only see the symptoms.

Looking at SYN counts alone does not help
much — the next step is to run a sniffer and see if
anything can be learned from the packets them-
selves. This is time consuming and not helpful
to IT people who lack time. Further a sniffer
trace is not a good way to diagnose an attack in
parallel either. We want something that gives us
more details and yet at the same time gives us

the big picture as a parallel view of multiple IP
sources. Looking at a sample set of ports does
help us determine in some cases that a particular
pattern is an attack, especially when we base our
observations in either shared IT experience (via
the Internet, local communication between local
security gurus and IT staff, the PSU abuse list,
and experience gained from cleaning up local in-
fected systems) or as possible, conducting a more
formal study of certain applications and their be-
havior as seen with Ourmon behind a firewall or
in a lab. In consequence in some cases, but not
all, we "know” we have an attack.

The (somewhat simplified) port signature re-
port given in table 1 consists of a small set of
interesting examples taken from one real PSU
report from fall 2004. Note that the table is not
focused on only high work weights — it is simply
one data item out of a composite set. *

Each port signature begins with the IP source
in question, with statistics for each individual IP
source given per line. In addition to three met-
rics, flags, work, and SA/S, the primary mecha-
nism here is the port signature on the far right of
each IP source. The port signature includes 1 to
10 two-tuple port samples, with each port sam-
ple consisting of a destination port and a packet
frequency count for each port in the port sample
space. The number of buckets for port destina-
tions is currently set to 10 (we use ellipsis in the
table for cases where the entire port sample space
is filled). For example the third entry shows that
packets were sent to TCP ports 5554, and 9898
by IP source 3. The former port received 65

The port signature report is sorted in ascend-
ing order from top to bottom in terms of its log-
ical key, the IP source address. (Here we are

4The real port report can be seen at any time at:
http://ourmon.cat.pdz. edu/ourmon/portreport.tzt.



Table 1: Port Signature Report

ip src flags work | SA/S port signature

1| (WOM) 100 0 | [445,100]
2 | (WOM) 100 0 | [24910,100]
3| (WOR) 100 0 | [5554,65][9898,34]

3.1 | (WOR) 100 0 | [5554,65][9898,34]
4 0 6| 100 | [1151,1][1905,20] [...
5 0 22 0 | [1433,99][3536,0]
6 0 2| 10 | [1124,14]...[6881,36][6882,5]...
7| (WOR) 100 0 | [139,33][1025,22][2745,21][6129,23]

replacing real IP addresses with logical numbers
as substitutes — IP source 1 will be referred to
as example 1, etc.) A sorted IP source space
is useful because one can see "nearby” or same
IP source network groupings during distributed
IP attacks, and of course, one can easily view
ones own IP source address space for outbound
attacks. For example, we have observed agobot-
based attacks in which all spoofed IP source ad-
dresses in a /24 subnet space are attacking the
same remote set of ports. In our report above,
there are two attacks that appear similar based
on their ports coming from the same network (3
and 3.1). The port signature is also sorted from
low port to high port and this helps us see sim-
ilar attacks using the same set of ports. Again
the same two "anomalies” (from 3 and 3.1) have
the same port signature and are likely to be the
same attack.

The flags metric shows us whether or not the
worm candidate is receiving two-way data. Flags
here include:

1. W - the work weight is 90% or higher.
2. 0 - few fins if any are returned.

3. R - large numbers of resets are being re-
turned.

4. M - few non-reset data packets are being
returned.

SA/S is a simple metric that measures the
number of SYN+ACK packets sent, which typ-
ically are the second packet in the TCP three-
way handshake, divided by the total number of
SYNS. 0% suggests a client, 100% suggests a
server, and some number in between suggests
possible P2P activity. This metric does not
stand by itself but it is very useful when cou-
pled with other indicators. For example if both
the work weight and SA/S are 100%, one is likely
seeing a SYN+ACK scan.

The work metric is shown next. In the report,
we might choose to show only those IP sources
with high work weights (say 80% to be conserva-
tive) because of the high rate of ”worminess” ob-
served with the work weight. Our IT experience
suggests that out of 1000s of instances of such
anomalies, we have seen less than 10 cases that
were not attacks. These cases are true anomalies
in that something is wrong, but they are not nec-
essarily worms. Three example anomalies so far
spotted (and explained) include: 1. one case of a
popular meeting application that enthusiatically
tries to reconnect to its server when the server
is taken down for backup, 2. well-known (as op-



posed to infected) campus email servers that are
attempting to forward error messages to spam-
mers (which given fake return IP addresses will
never work), and 3. certain P2P clients (often
Gnutella-based) that have a very low success rate
for peer connections. As a result at this point
in time, we are satified with our general under-
standing of the work metric in the high range.
However there are a number of reasons to look at
lower work weights for hosts that have satisifed
the worm metric. One of the more fundamental
reasons is that the port report itself may capture
some attacks (as in example 5) where the work
weight is low. In such examples, other criteria
such as ports are useful.

In an attempt to characterize a rather im-
portant set of Microsoft ports that show up
over and over in our port report, we captured
packet traces of typically a million packets apiece
from clients and servers protected by a fire-
wall from the Internet. Here we focused on
specific Microsoft ports used by the Microsoft
file share system (ports 135-139 and 445) and
Microsoft SQL server applications (TCP port
1433). We dumped their associated SYN tuples
during short and long sample periods to see if
these ports would show up in the worm met-
ric sample or the hosts would have high work
weights. The answer was no, which conformed
to the intituion of various local security experts.
This is not surprising given that TCP connec-
tions with these applications are typically long-
term. This gives us confidence that TCP ports
in these ranges that appear in the port report
are likely attacks.

Now let us look at the examples chosen as
representative of certain classes of phenomenon.
Examples 1, 2, 3, 3.1 and 7 show work metrics
at 1003.1 are examples of the dabber worm[5].
Example 7 is an old phenomenon seen many

times, and is some form of phatbot/agobot at-
tack. These two examples taken together illus-
trate a very interesting forensic possibility which
is that the display of the ports in some cases (not
all) may allow you to identify the worm. On the
other hand, Example 2 is a new phenomemon as
of late November, 2004 which we have not seen
before but based on experience and the work
metric, it is highly dubious. Still we have not
as of yet identified it.

At a lower weight, example 4 shows some-
thing we call the noisy web server phenomenon.
This always appears as an external IP address.
Certain web servers seem to exhibit this behav-
ior possibly because of large numbers of small
TCP connections due to active web page dis-
plays. The work weight tends to be low, thus
there is two-way data exchange. The SA/S met-
ric is useful here and suggfests these systems are
indeed servers. This is apparently a benign phe-
nomemon but our understanding of this behavior
could stand improvement.

Example 5 has a low work weight, and yet we
know from the previously mentioned application
testing that any mention of port 1433 in the work
report (with large numbers of packets) is an at-
tack. The work weight is low here because this is
a password guessing attack on SQL servers, thus
there is (nefarious) work being done. Here the
use of ports is invaluable. It is also important to
remember that one does not need a high work
weight to have an attack.

Example 6 is interesting, as it is quite com-
mon to see P2P applications appear in the port
signature report. Again this is because peering
P2P hosts will have some subset of unavailable
peers. Of course there is no guarantee that a
given P2P application is bound to a given port.
Still we surmise that this example is using Bit-
Torrent because of ports 6881 and 6882. The
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SA/S metric is interesting here in that it sug-
gests the host in this example has some server
tendencies although it tends to the client side.
In general, we intend to do more research on the
lower work weights. For example, we hope to im-
prove our abilities to identify P2P applications.

5 Related Work

Until quite recently, scan detection has received
relatively little attention compared to other in-
trusive activities. Part of the reason is the ubig-
uitous nature of scan and scan-like background
data. Another has been the relatively primitive
measures used in many intrusion detection sys-
tems for dealing with scans. The typical IDS
detects scans with a relatively simple threshold
measure. SNORT/[12] is typical of this approach.
Bro[9] is similar but somewhat more stateful.
Recent work by Stolfo’s group at Columbia[l1]
can detect much slower scans as well as some dis-
tributed scans by associating scan state with a
subnet address rather than an individual IP ad-
dress. In addition, he has established a network
of detectors that exchange information about
scans detected at widely separated locations.
Work at Silicon Defense[13] collects statistically
anomalous events over a long time period and at-
tempts to cluster them into distinct surveillance
attempts. We note that this is another example
of locality applied to scan detection. The cited
paper also contains extensive background infor-
mation on the surveillance detection problem.
More recently, Jung, et. al.[4] have looked at
the ratio of connection attempts to connection
successes as a function of network occupancy to
choose between competing hypotheses that the
source of the attempts is a scanner who does
not know the network structure or a benign user
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who occasionally fails to make a connection due
to broken URL links or faulty DNS information.
One principle difference between Ourmon and
this work it that Ourmon also includes the port
signature report which both helps determine the
nature of the attack and shows locality informa-
tion about attacks in parallel. Also perhaps the
nature of the networks in question may influence
the results. Perhaps PSU sees more P2P traffic
due to the large local population of students?

6 Conclusion

In conclusion, we suggest that network control
data may be viewed as a rich source of informa-
tion about normal network locality. In particu-
lar, anomaly detection may make use of network
control data as represented by TCP control pack-
ets, flow counts, ICMP errors, and in the case
of individual TP sources, counts of packets sent
to and returned from the IP sources themselves.
We have shown graphs and reports that exploit
this phenomenon which are based on either using
simple integer counts or top talker graphs (his-
tograms). In general, RRDTOOL graphs give
us a network point of view. The histograms and
port signature report give us a per IP source
view.

Our control theory notion has suggested a
number of interesting new tuples and metrics in-
cluding:

1. A per IP source TCP SYN tuple that in-
cludes two-way data. This SYN tuple can
be used for multiple outputs including a
port signature report which shows anoma-
lies in parallel, and a top talker histogram
graph that shows sources sending the largest
numbers of SYN packets.



2. We have derived two metrics from this SYN
tuple including a work weight metric that
gives us a simple way to determine if an IP
source is simply bombarding us with pack-
ets or if there is genuine two-way work go-
ing on between that source and remote des-
tinations. Our worm weight metric gives
us a set of IP sources that seem to be
"noisy” in terms of sending more SYNS
than FINS, and when combined with the
work weight and other data helps us find
scanning anomalies.

. Our port signature report gives us insight
into parallel anomalous sources. This can
reduce the time spent trying to character-
ize the activity of a remote set of sources,
which may be exhibiting a known anomaly
or running a P2P application.

For reasons of brevity in this paper, we have
neglected discussion of UDP/ICMP scan-
ners. However we have also developed a
UDP work weight based on two-way ex-

change of UDP data, and returned ICMP
errors.

One important thread in these tuples and
weights is the notion of two-way data. Data re-
turned may either lend credibility to the notion
that real work is going on, or detract from that
notion if the packets returned are errors. An-
other important aspect of these tuples are error
counts. For TCP that primarily means RESETS
and for UDP, ICMP errors.

Although we feel our work reported here is ex-
citing, it is also recent and preliminary. Anomaly
detection work takes time and must be based
on long-term analysis and long-term baselining
of normal (and abnormal) data. As an exam-
ple of even a simple metric that needs study,
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consider our RRDTOOL/BPF graph of SYNS,
FINS, and RESETS in the PSU network. We
are not sure what ratio of SYNS to FINS is rea-
sonable in the PSU network? One might also
ask what the ratio should be for particular kinds
of applications (email or web), particular hosts,
subnets, autonomous systems, and the Internet
as a whole? In other words, what kinds of ”lo-
calities” might exist, and what might one expect
a healthy locality to look like? Such information
would be invaluable for determining the health
of that locality.

In the near future, we hope to take our vari-
ous counters and metrics per IP source includ-
ing SA/S counts, two-way flags, the work weight,
and the port signature tuples and determine if we
can use these techniques possibly coupled with
Bayesian statistical methods to detect P2P flows
or attacks in a more general way. We intend to
study the worm weight as well and analyze the
constant used there to determine under what cir-
cumstances a different constant might be useful.
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