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Abstract

Ourmon 1s a near real-time web-based lightweight
network monitoring and anomaly detection system
that captures packets using port-mirroring on Ether-
net switches. It primarily displays data via graphics
using either RRDTOOL graphs or via histograms for
top talker style graphs. We have developed a theory
that network scanning launched primarily by worm
programs including TCP and UDP scanners may be
caught by monitoring network control data includ-
ing TCP control packets (SYNS, FINS, RESETS)
and ICMP errors, or by monitoring certain carefully
chosen metadata such as the flow count itself. We
present new notions of ”flow tuples” including a TCP
SYN tuple and a UDP error tuple, along with some
weighting schemes used in our system. We illustrate
our ideas with examples of attacks as graphed by the
Ourmon system, and relate those examples to our
control theory ideas.

1 Introduction

Recently John McHugh and Carrie Gates at CERT
[6] have presented a mnovel theory of anomaly de-
tection based on locality. Multiscale locality has
proven to be a key to understanding a wide variety of
physical and other phenomena. Locality of program
counter and data references turned out to be the key
to the design of effective memory paging systems [2].
In this case, the key locality concept is the “working
set,” i.e a set of memory pages that, if maintained in
the physical memory of the computer will allow the
program (or programs) in execution to make progress
without excessive page faulting. This work was in re-

sponse to the observation that, on some time sharing
computers, page faults occurred so frequently that
the CPU was mostly idle, waiting for the page(s) con-
taining the next data or instructions to be referenced
to be loaded into memory. This phenomenon, termed
thrashing, led to a variety of models of program be-
havior, the understanding of which allowed efficient
implementation of paged memory systems. As a side
benefit, this area also led to studies that resulted in
efficient data structures and algorithms for dealing
with data whose size demanded organization in vir-
tual memory.

The thesis of the earlier paper was that locality
principles are a key to distinguishing and understand-
ing “normal” behavior in computer systems that may
be subject to attack by outsiders. We feel that an
understanding of normal is an important step to-
wards understanding that portion of abnormal be-
havior that represents the actions of malicious users
of the system. Our long term goal is to develop a suf-
ficient understanding of the systems with which we
work so that we can identify properties that are nec-
essary parts of certain malicious activities, and, with
luck, properties that are sufficient to indicate such
activities.

In general, locality is manifest when the behavior
of the system can be represented by relatively com-
pact clusters in some dimensions of a multidimen-
sional measurement space. Note that we have not
used the terms “benign” and “malicious” as surro-
gates for normal and abnormal. In this context, ab-
normal means unusual. In some cases, as we attempt
to understand why locality appears to characterize
normal behavior, we may be able to make a case that
certain classes of malicious behavior are necessarily



abnormal in that it will necessarily fail to meet the
“normal” clustering criteria. On the other hand, we
may not be able to make the case that all normal
activity necessarily satisfies the “normal” clustering
criteria so that failure to cluster is evidence of mali-
cious behavior, but does not identify such behavior
with absolute certainty.

In network terms, one may baseline local network
data, and consequently observe significant anomalies
in a baseline, thus detecting that network attacks are
occuring. Furthermore, this principle of locality is
something that should be built into network-based
anomaly detection systems. Locality is represented
both in terms of network address clustering as well
as in the temporal behavior of sources both internal
and external to the network. Ourmon, the subject
of this paper, 1s another lens through which we can
perceive manifestations of locality.

Ourmon [7] is a network monitoring system that is
somewhat akin to systems like SNMP RMON [17] in
that 1t attempts to capture network data including
top talker graphs of traditional flows, packet counts,
and counts of general protocol data including TCP
versus UDP traffic, etc. It runs in thirty second sam-
ple periods using various filters that in general cap-
ture integer counts or top talker tuple lists. Ourmon
is divided up architecturally into two programs, a
front-end and a back-end. The front-end uses some
hardwired and some user-defined filters for captur-
ing data and placing the summarized data in a small
file, that is then passed at the sample period time
to the back-end which graphs the data on the web
or analyzes it in ASCII reports. Thus Ourmon is
a near real-time system, as the worst case delay in
front-end to back-end processing is never more than
one minute. In this paper we will focus on back-end
graphics as examples of Qurmon’s capabilities.

Ourmon has two fundamental techniques for dis-
playing data on the web in a graphical fashion:

1. RRDTOOL [10] stripcharts based on integer
counters. Ourmon uses RRDTOOL to construct
graphs based on various individual integer coun-
ters. The filter mechanism here is often based

1For more architectural details,
http://ourmon.cat.pdz.edu/ourmon/info.html.

please see:

on a technique where multiple Berkeley Packet
Filter (BPF) [5] expressions can be grouped in a
single RRDTOOL graph. This is a major graph-
ical tool in the Ourmon system and is often use-
ful for looking at network-wide information. For
example, we use it to graph the total numbers
of TCP SYN, FIN, and RESET packets in our
network. See Figure 1 for an example of an

BPF/RRDTOOL graph.

2. Top talker lists of information expressed as his-
tograms. Top talker lists typically have some
form of tuple associated with them that is ei-
ther keyed on an individual IP source address or
on the traditional TP flow tuple of (IP source,
IP destination, IP protocol, L4 source port, L4
destination port). See Figure 2 for an example.

At PSU, during Fall 2003 we noticed that the to-
tal count of ICMP flows, which was unfortunately
not graphed at that time, had increased from 10’s or
100’s of flows to over 100000 flows. This was because
students had returned from summer break and had
apparently brought a mass infection back with them
of the Welchia/NACHT worm [16]. This particular
worm includes a ping scanner to scan for additional
IP addresses, thus many such worms raised the over-
all ICMP flow count. It should be noted that this
was a case of no particular host standing out by itself
in terms of network traffic. What stood out was the
increase in network-wide traffic for ICMP.

Of course, this is an excellent example of the prin-
ciple of locality. We knew that ICMP flows at PSU
were typically on the order of 10..100’s per sample pe-
riod (30 seconds), and should not be 100000 per pe-
riod. We were also alerted to a system-wide anomaly,
not just an anomaly for a single host. This particular
incident caused us to begin our recent work to steer
Ourmon in the direction of becoming an anomaly de-
tection system as well as a general network monitor-
ing system. It also led us to propose two network
anomaly system design principles that we believe are
of general importance and have found to be profitable
in our attempts to capture network intrusions both
from a network-wide and per source IP host perspec-
tive. The two principles are as follows:



1. Tt is useful to focus on network control data.
For TCP this means SYNS, FINS, and RESETS
as well as ICMP errors. For UDP this princi-
pally means ICMP port unreachables although
other ICMP errors are useful as well. As an
example, we have a top talker mechanism that
captures TCP SYN attacks and a BPF graph
that shows network-wide counts of TCP SYNS,
FINS, and RESETS. In general, we can use our
BPF/RRDTOOL to graph network-wide behav-
ior, and use various tuple capture filters to look
at the behavior of individual TP sources.

2. Carefully chosen metadata may also be of use
for anomaly detection. For example, we orig-
inally chose to show the largest top talker IP
flows as this is a very conventional way to dis-
play flow information. As it turns out, we should
also have been graphing the number of flows. In
the previous category we mentioned top talker
SYN counting for individual IP sources. We also
developed a metadata-based system that sim-
ply graphs the total number of suspicious sys-
tems sending many TCP SYNS, where we ar-
bitrary declare that a certain number of SYNS
- FINS per count period is ”interesting”. As a
result, we have observed what appear to be co-
ordinated SYN scanning ”sweeps” that originate
from many IP sources at a time.

We should point out that Ourmon at PSU is de-
ployed in our DMZ. Our university has around 26000
students. We use Ourmon to look at network-wide
traffic for a network with over 5000 hosts on it, 300+
Ethernet switches, and 10 routers plus external con-
nections to Internetl and Internet2. Thus all the
graphs presented here come from our central DMZ
monitoring station.

Our paper is organized around recently developed
anomaly detection mechanisms based on the general
locality theory. We illustrate these mechanisms with
example graphs based on various attacks including
large multiple TP source attacks that appear to be
distributed SYN attacks, and small attacks based on
single PSU hosts infected with recent viruses (since
cleaned up). In section 2 we will look at TCP-based

mechanisms that illustrate our control theory notion.
In section 3 we look at mechanisms derived from
ICMP errors, and UDP flows. In section 4 we look at
some metadata examples including our worm count-
ing mechanism. In the last sections we present related
work, our conclusions, and possible future develop-
ment work.

2 TCP Anomaly Detection

In this section, we are going to look at two filter mech-
anisms that are both focused on TCP anomaly detec-
tion.

We begin with Figure 1, where we show a daily
(last 30 hours) picture using three BPF expressions in
a RRDTOOL stripchart. This picture shows the total
TCP SYN, FIN, and RESET packet counts for PSU
traffic to and from the Internet for a period slightly
over thirty hours. ”Now” (10:00 AM) is on the right
hand side and the stripchart moves to the left every
thirty seconds. The top curve is the number of SYNs
and the size of this curve has basically suppressed the
FIN and RESET count lines, barring a small 6:00 am
spike in the RESET line. Clearly the spikes in the
SYN line indicate one set of major anomalies.

These attacks were caused by large-scale SYN at-
tacks coming from the Internet into PSU during the
time period.? The graph shows at the bottom that
the variation in average SYNs to maximum SYNS
was about 1 to 3. In other words a single attack
could nearly triple the number of incoming SYNS.
From historical experience we know that PSU’s over-
all traffic is typically diurnal with peaks in the early
afternoon. This graph makes a strong suggestion that
the number of SYNS during the entire period at PSU
is too high, and that the network is seeing a fair num-
ber of TCP SYN scans. One might expect that the
number of SYNS and FINS would somehow march
together even if there were less FINS. Of course, long-
term baselining can help resolve this issue, but as this
graph 1s new no such baseline currently exists. We
should also point out that the distributed attack here

2We believe these attacks are distributed and coordinated
SYN attacks that are simply looking for exploitable Microsoft
systems, although IRC server attacks have also been observed.



is the same as shown in Figure 7 and Figure 8, which
we will discuss later in our metadata section.

Our second TCP filter is based on a new top talker
tuple, which is loosely modeled on our original flow
list 5-tuple as found in Cisco’s netflow tool [1]. We
call this the topn_syn list and show an example his-
togram in Figure 2. The current generation tuple
stored by the topn_syn list has the form:

(IP source address: SYNS: FINS: RESETS:
TCPTOTAL)

The logical key in this tuple is an TP source address.
SYNS, FINS, and RESETS are counts of TCP control
packets. SYNS are counts of SYN packets sent from
the TP source. FINS and RESETS are only counted
when sent back to the IP source. In other words, they
represent evidence of two-way traffic. The TCPTO-
TAL counter represents the total number of packets
sent both ways (including control packets)3. Our cur-
rent tuple sorting mechanism sorts on the number of
SYN packets sent, although it also generates a num-
ber of interesting weights discussed below.

There are currently two weights used with this
graph, which we call the work weight, and the worm
weight. The work weight is computed as follows:

(Ss + Fr + R,)/Tsr

and is expressed as a percent. The idea here is that
we take the control packets counted and divide that
count by the total number of TCP packets. This is
roughly control divided by data. Obviousally 100%
here is a very bad sign. On the other hand, if ordinary
data packet exchange has occured, the weight will be
much lower. (We will discuss the worm weight below
in section 4 in more detail).

In the graph our histogram labels show the TP
address, followed by the FIN (f), RESET (r), total
count (t), and work weight plus an additional ” worm”
flag. The worm flag is based on the work weight

3The next generation of this tuple will include a sampling
of 1.4 destination ports, and will also distinguish the number of
TCP packets sent from the IP source, and the number of TCP
packets returned to the IP source. This is important because a
spoofing IP source might choose to send garbage data packets
to attempt to convince Ourmon that it is doing real work.

metric and is set to "W” if that metric is 90% or
more. 90% is probably a conservative number, how-
ever numerous manual checks with tcpdump [12] have
shown instances greater than 90% to be worms (bar-
ring some email servers trying to return spam to non-
existent addresses). The flag is set to ”w” for a work
metric in the range of 50..100%. Manual checks in
this range have revealed both worms and IRC ”bots”
that seem to be anomalous as well (as well as one ill-
behaved Gnutella P2P client). In the graph the line
below the FIN and RESET counts shows the SYN
count used for sorting.

A few packets of (simplified) tcpdump output for
the top host in the graph are as follows:

131.252.205.73.3885 > 10.0.0.1.445: S
131.252.205.73.3886 > 10.0.0.2.445: S
131.252.205.73.3886 > 10.0.0.3.445: S

In other words, the PSU host in question is per-
forming a port 445 (Microsoft file share) TCP SYN
scan of external IP hosts. It has a virus and is search-
ing for other hosts to infect.

Our first generation SYN tuple merely counted
SYNS, FINS, and RESETS, and sorted on SYNS.
We quickly learned that in general many SYNS and
no FINS was a sign of an infected host. However we
also found that we had false positives in that boxes
running various forms of peer to peer applications
also produced high rates of SYNS and it was not
always clear if a ”SYN-full” host had a virus or a
Gnutella user. The most popular P2P clients at PSU
are Bittorrent, Edonkey, Gnutella, and Kazaa. In or-
der to eliminate false positives we made a study of
TCP control packet counts with these P2P apps and
determined that only Gnutella and Kazaa had work
weights above 10%. Gnutella’s average weight over
millions of packets was on the order of 25%. Kazaa’s
weight was less at 20%. As a result of this process,
and many instances of manual checks with tcpdump,
we have mostly been able to ignore possible worms
that in point of fact are P2P applications generating
high numbers of FINS and RESETS.

The SYN list graph can at times be paired with the
BPF TCP control graph. It is fair to state that the
BPF control graph presents a network-based point of



view and the SYN list gives individual instances of IP
sources generating high rates of SYNs. We have seen
examples where a spike in the control graph can be
matched up to a log entry in the SYN list at the same
time. However it is also often the case that many
IP sources are generating small numbers of SYNS
at the same time, thus raising the SYN line on the
BPF graph, but not showing any obvious evidence in
the SYN list. As a result, we modified the SYN list
to generate a ”tcpworm” report based on a second
metric. This reports allow us to see the entire set of
IP sources generating suspicious numbers of SYNS.
We will explore this second-order mechanism further
in the metadata section below.

3 Network Errors - ICMP and
UDP

The focus in the previous section was on TCP control
packets as well as the notion of two-way work with
the TCP protocol. In this section, we turn to look
at filters that focus for the most part on ICMP er-
rors. The notion of two-way exchange (work or errors
returned) plays a role here as well. We look at two
top talker mechanisms, one of which simply shows
ICMP flows, and one that shows a weighted UDP
error scheme. In addition we look at a BPF-based
graph that shows a network view of ICMP unreach-
able errors. We present graphs from two attack pe-
riods: 1. a major (in terms of network disturbance)
UDP slammer attack, and 2. a more minor UDP
scanning attack.

First we look at the UDP slammer attack which
is shown in Figure 5, Figure 3 and Figure 4. Figure
5 shows the amount of traffic generated by layer 4
protocols, and normally can be construed as a graph
belonging to network management, not anomaly de-
tection. Here we see a severe attack from a single
infected PSU host generating UDP packets at a rate
nearly reaching 70 megabits per second. Figure 4
shows a BPF-based graph that is a total network
count of four kinds of ICMP unreachable packets, in-
cluding network, host, port, and administrative pro-
hibited unreachable messages. The characteristic at-

tack pattern (roughly a square wave) can be seen
here as well. Individual UDP attacks as it turns out
often cause spikes in this graph (TCP attacks may
cause them as well, although the spikes are often less
sharp).

In addition to conventional top talker graphs for all
IP, TCP, and UDP flows, we also have a top talker
graph for ICMP flows. As it turns out this graph can
also be viewed as an anomaly detector. In general
conventional TCP, or UDP flows, simply do not show
anomalies as they are designed to show ”big bits”.
However as this particular UDP worm can be viewed
as a large disturbance in the network, it also left a
large trail of ICMP errors behind it. Thus Figure 3
is particulary interesting. Here our slammer worm
can clearly be seen to be generating a trail of ICMP
havoc elsewhere, as all the bars in the histogram in-
volve one TP host (which is highly unusual). The host
in question is causing various kinds of ICMP errors
including ttl exceeded in transit, ICMP unreachables,
and curiously enough, routing redirect messages from
many hops away.* However this particular event (for-
tunately) is rare, and one is not likely to often witness
such a large scale error footprint.

We have learned that in general over a longer pe-
riod of time (say an hour or a day), one can build
a cumulative log that will discover individual hosts
that pile up great numbers of I[CMP errors and that
may not be otherwise visible. In general, hosts with
many ICMP errors are often worms, although other
factors cannot as of yet be ruled out. Large num-
bers of ICMP unreachables, ICMP ttl exceeded, or
ICMP routing redirects may indicate a worm infested
system. Of course ICMP host unreachables are usu-
ally caused by UDP worms, and not TCP, but TCP
may cause other kinds of ICMP errors, including
ICMP administrative prohibited messages. Our sys-
tem keeps a one week log of all top talker tuples.
It also produces an hourly summary for the current
day of ICMP log entries (and top SYN generators
as well). Here is a simplified example of the hourly
ICMP summary report with two flow entries:

4In our flow tuple the major ICMP code is given on the
LHS, and the minor code is given on the RHS, thus (3, 3)
means ICMP unreachable, port.



00:00:01: 993: 10.0.0.1->
131.252.244.66: [unreach/port] : 1764146
04:58:36: 1220: 10.0.0.2->

131.252.243.64: [unreach/host] : 352163

The daily beginning time and number of instances
(times the flow appeared in log entries for the day) for
the ICMP flow in question are given. The first flow
accumlated nearly two megabits of ICMP unreach-
able port errors. The second flow shows a different
host that has acquired a fair number of instances and
bytes of ICMP unreachable host errors. Of course,
our first instance is our UDP slammer worm, but
in general, the notion that scanning hosts generate
ICMP errors behind them has proven useful in prac-
tice, even for smaller scale worms.

In our last example, we look at a new top talker
tuple mechanism shown in Figure 6 that we call top
UDP errors. This graph shows a PSU dormitory host
with a UDP virus infection (the system was scanning
port 1433). Here we have a tuple that consists of:

(IP Source Address: UDP packets sent:
UDP packets returned: ICMP errors returned)

Tuples in this graph are sorted by a two-way udp
error weight computed as follows:

w= (U = Uy * I,

For each IP source, we count the number of UDP
packets sent and UDP packets returned to a UDP
host. Our computed weight is then the difference
between UDP packets sent and received times the
number of ICMP errors returned. For example, our
worm here has sent around 5000 UDP packets sent,
with few packets returned, and generated around 600
or so ICMP errors returned as well. Thus its weight is
around 3 million and clearly exceeds the next highest
UDP error generator in the graph by two orders of
magnitude. This graph is extraordinary compelling
in that the histogram bar for this particular host
is clearly suppressing all other hosts on the graph.
We have seen that UDP worms are much more rare
compared to TCP worms, and this graph has taught
us that statistical outliers produced by this weight
mechanism are often useful indicators and likely to
be worms.

4 Metadata Examples

In this section we look at two useful anomaly detec-
tion mechanisms that are "metadata” by which we
mean second-order graphs derived computationally
from existing filters. Both figures in this section show
distributed TCP SYN attacks coming into PSU over
the same time period. These attacks may have used
the agobot (or phatbot) tool and seemed to involve
remotely controlled TRC chat servers [15].

Figure 7 which we will call the flow count graph
shows the count of flows for TP (all TP flows), TCP,
UDP, and ICMP flows respectively. We assert that it
is reasonable to view the count of flows in a network
as part of the control plane of the local network. Our
top talker flow mechanism only shows the top N flows
in its histograms in terms of bit rate (as in Figure 3
showing the top ICMP flows). Here we instead show
the total count of all the flows during the sample
period and represent the count for the four kinds of
flows in an RRDTOOL graph.

In this case, we can see a number of spikes in the
count of TCP flows. In general, baselined RRD-
TOOL data has shown that PSU traffic in terms of
the TCP flow count is diurnal, with perhaps 1k flows
at night and 2k flows during the day. Here we see
one spike at 9:30 PM on the previous day that has
doubled the number of flows to around 4k. Of course
in this case we have ”flows” of one packet as PSU’s
TP destination address space ( a class B ) is being
walked by multiple external TP sources. This graph
shows a total of 5 TCP spikes, and also one UDP
event as well.

Figure 8 which we will call the worm count graph
is probably our most interesting artifact. It is a count
of suspicious TCP SYN scanners that is produced as
a side effect from the previously mentioned top talker
SYN tuple list. In this case our front-end statistics
producing engine takes the entire sorted SYN list,
and sorts it again according to the following weight:

Ss—F.>C
We simply subtract the FINS returned from the

SYNS sent and only count the tuple if C, a constant,
is greater than 40. There are three counters shown



in the tworm graph, 1. total IP sources, 2. ”us”

(meaning TP sources that belong to the home net-
work, PSU), and 3. "them” (IP sources that are ex-
ternal to the home network). Thus TP sources in the
list of SYN tuples are counted in the worm count if
they have C more SYNS than FINS. They are classi-
fied as "us” if they match a configured home network
and mask and ”them” otherwise. The resulting graph
clearly shows a number of sustained attacking peri-
ods with TP source counts in the worst case around
1k®. We were incredulous at first as to whether or not
this filter worked, but the curves produced by it have
been verified by hand using tcpdump, and by other
graphs including the flow count filter pictured be-
low and the RRDTOOL/BPF graph of TCP control
packets (Figure 1). Thus we believe it is producing
credible results.

Our subtractive metric seems to work simply be-
cause when large attacks are not taking place we are
ignoring large numbers of small producers of SYNS
and FINS (most applications) and hence establish
a stable and small count baseline that may consist
of some P2P apps and some single host infections.
When an attack occurs, typically most of the attacks
produce SYNS with few or no FINS, and hence raise
the curve. We choose 40 at the time as an initial con-
servative measure, and believe that number to be too
high. We are in the process of collecting data during
new attacks and hope to refine that constant with a
long-term statistical study.

Ourmon produces a report file called ”tcp-
worm.txt” that is logged, and contains SYN tuples for
all of the IP sources that satisfied the worm weight
metric. Thus we can review this file to determine
which specific TP hosts were involved in an attack.

5 Related Work

Until quite recently, scan detection has received rela-
tively little attention compared to other intrusive ac-
tivities. Part of the reason is the ubiquitous nature
of scan and scan-like background data. Another has

5 Agobot is capable of spoofing IP source addresses and thus
there really isn’t any known way at this time to tell how many
true IP hosts were involved in these attacks.

been the relatively primitive measures used in many
intrusion detection systems for dealing with scans.
The typical IDS detects scans with a relatively sim-
ple threshold measure. SNORTJ[13] is typical of this
approach.

Bro[9] is similar but somewhat more stateful. Re-
cent work by Stolfo’s group at Columbia[l1] can de-
tect much slower scans as well as some distributed
scans by associating scan state with a subnet address
rather than an individual IP address. In addition, he
has established a network of detectors that exchange
information about scans detected at widely separated
locations. Work at Silicon Defense[14] collects sta-
tistically anomalous events over a long time period
and attempts to cluster them into distinct surveil-
lance attempts. We note that this is another example
of locality applied to scan detection. The cited pa-
per also contains extensive background information
on the survelience detection problem.

More recently, Jung, et. al.[4] have looked at the
ratio of connection attempts to connection successes
as a function of network occupancy to choose between
competing hypotheses that the source of the attempts
is a scanner who does not know the network structure
or a benign user who occasionally fails to make a
connection due to broken URL links or faulty DNS
information. Gates, McHugh, and Binkley[3] have
applied the Jung, et. al. analysis to NetFlow data.

6 Conclusion

In conclusion, we have suggested that network con-
trol data may be viewed as a rich source of infor-
mation about normal network locality. In partic-
ular, network control data as represented in terms
of TCP control packets, counts of flows, ICMP er-
rors, and in the case of individual IP sources, counts
of packets sent to and returned from the IP sources
themselves 1s useful for anomaly detection. We have
shown graphs that exploit this phenonmenon which
are based either on integer counts (using RRDTOOL)
or a top talker graphs (histograms) based on informa-
tion and weights associated with particular IP source
addresses. In general, the RRDTOOL graphs are giv-
ing us a network point of view. The histograms give



us a per IP source view.
Our control theory notion has suggested a number
of interesting new tuples and metrics including:

1. A per IP source TCP SYN tuple as follows:
(TP source address, TCP SYN count, FIN count
returned, RESET count returned, Total TCP
packets sent). We have derived two metrics from
this SYN tuple including a work weight met-
ric that seems to help us rule out P2P-based
false positives and a worm weight metric that
has helped us display large multiple IP source
SYN attacks and determine IP source addresses
of those involved in those attacks.

2. A per TP source UDP count tuple: (TP source,
UDP packets sent, UDP packets returned, total
ICMP errors returned). We associated an er-
ror weight with this tuple that gives a quadratic
weight function for TP sources generating many
UDP packets with little or no UDP data re-
turned and with many ICMP errors returned. In
theory, this metric should make UDP scanners
stand out from normal sources of UDP traffic.

One important thread in these tuples and weights
is the notion of two-way data. Data returned may
either lend credibility to the notion that real work
is going on, or detract from that notion if the pack-
ets returned are errors. Another important aspect
of these tuples are error counts. For TCP that pri-
marily means RESETS and for UDP, ICMP errors
(although TCMP errors for TCP sources cannot be
ruled out).

Although we feel our work reported here is excit-
ing, It is also recent and preliminary. Anomaly detec-
tion work takes time and must be based on long-term
analysis and long-term baselining of normal (and ab-
normal) data. As an example of even a simple met-
ric that needs study, consider our RRDTOOL/BPF
graph of SYNS, FINS, and RESETS in the PSU net-
work. We are not sure what ratio of SYNS to FINS is
reasonable in the PSU network? One might also ask
what the ratio should be for particular kinds of ap-
plications (email or web), particular hosts, subnets,
autonomous systems, and the Internet as a whole?

In other words, what kinds of ”localities” might ex-
ist, and what might one expect a healthy locality to
look like? Such information would be invaluable for
determining the health of that locality and possibly
as an efficiency metric for TCP-based applications.

In the near future, we intend to refine our TCP
SYN tuple and add more information to it. For ex-
ample, we need to break up the total TCP count
variable into packets sent and packets returned sim-
ply because a spoofing IP source might inflate the
total count to make it appear that it is doing real
work. It would also be useful to add some sampled
destination port information as this would help make
it clear what kinds of attacks are occuring. We also
intend to study our TCP SYN tuple and the vari-
ables and weights associated with it in a long term
statistical study in the hopes of determining if some
variables are more important than others.
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