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Abstract

In this paper we present anomaly-based tech-
niques for detecting two kinds of botnet meshes
including client botnet meshes where the server
is off-campus, and server meshes with an on-
campus server. Our current anomaly-based bot-
net detection algorithm is based on a combina-
tion of simple statistics, and combines layer 7
IRC payload parsing with the detection of TCP
scanners using a heuristic called the TCP work
weight. An IRC network with a high number
of scanning IP hosts is considered likely to be a
botnet client mesh. Server meshes with an on
campus server are easy to detect simply because
numerous basic message count statistics includ-
ing the number of IRC hosts in a given channel
or the total number of campus-wide IRC PING
and PONG messages will skyrocket. In the last
year we have detected three bot servers on our
campus with this methodology and numerous in-
stances of botnet client meshes. Our detection
system is available as a module in our Ourmon
network monitoring and anomaly detection sys-
tem which is currently available on sourceforge.

1 Introduction

Ourmon [3] is a network monitoring and anomaly
detection tool. Originally it was intended as
an open-source system somewhat akin to SNMP
RMON [16] with the goal of providing web-
based graphics and reports about current net-
work statistics. Over the last few years it
has evolved into a network security tool that
provides information about important network
anomalies including TCP and UDP scanners,
worms, denial of service attacks, and IRC bot-
nets.

Ourmon has two conceptual parts, a front-end
probe which sniffs data from an Ethernet switch
and samples packets for thirty-second periods,
and a back-end graphics display and logging sys-
tem. The entire system uses various filters that
in general capture integer counts or list tuples of
various kinds (roughly similar to flows). How-
ever our version of "flow data” allows for funda-
mentally different kinds of tuples which include
traditional flows, but also provide other kinds of
keys for lists including TRC channel names, or IP
source addresses. Back-end data is displayed on
the web, and consists of various kinds of graphs



and ASCII reports including data for the last 30-
second sample period. The back-end also sum-
marizes 30-second data over longer periods thus
providing hourly reports, daily reports, and in
some cases yearly summarizations.

The current Ourmon system is open-source
and is available on Sourceforge[l5]. It
is also available at PSU where much of
the statistics for our DMZ may be seen
live[11].  Architectural details and user infor-
mation are available on the web as well at:
http://ourmon.cat.pdz.edu/ourmon/info. html.

In this paper we will first provide a short
introduction to the Ourmon architecture that
focuses on features used for botnet detection
and neglects its more general network monitor-
ing and anomaly detection features. We then
will discuss how our current open-source sys-
tem can easily detect various kinds of botnets
including client botnets where the server is off-
campus, and server botnets where the server is
on-campus.

2 QOurmon Architecture

Ourmon is divided up architecturally into two
sub-systems, a front-end probe and a back-end
data processing engine which may be combined
on a single computer but for efficiency and secu-
rity reasons should ideally run on two comput-
ers. The probe is placed in a network DMZ and
gathers packets from an Ethernet switch that
is programmed to capture all packets passing
through its other interfaces. Thus we can use
the probe to watch a set of servers or the Inter-
net ingress/egress point for a network. Front-
end data is typically condensed (we do not send
all flows, but instead aggregate data) and if the
two-system design is used, data may be shipped

to the back-end system typically via secure shell
or wget. Ideally the back-end system is not a
bastion host like the probe and is protected in
some sort of secure enclave.

Front-end data consists of a small set of ASCII
files which are copied at the end of the the thirty
second sample period to the back-end. The file
format is internal to the Ourmon system and
is not standardized in any way but may change
from release to release. This allows us to rapidly
customize and change Ourmon as the system
evolves over time. The back-end system both
logs and processes the data producing hourly re-
ports, web graphics, and other forms of output.
The back-end system is expected to run an open-
source web server such as Apache.

Ourmon is a near real-time system, as the
worst case delay in front-end to back-end pro-
cessing is never more than one minute. The
back-end (using UNIX cron) produces data that
reflects the (near) current situation for the net-
work, and also summarizies data on the hour
during the current day. Depending on the data
type, the back-end also produces daily reports
(typically for tuples) or RRDTOOL [13] graph-
ics that can span a year.

The front-end implements a set of configurable
filters (they may be turned on or off) that can
be loosely divided into three basic major types.
Filters consist either of list tuples that are often
treated as top N lists (for example, we may want
only the top 100 tuples in terms of activity),
Berkeley Packet Filter [9] expressions that may
be grouped together into a composite back-end
RRDTOOL graph or certain hardwired scalar fil-
ters that are also displayed as RRDTOOL graph-
ics.

RRDTOOL graphs baseline a year’s worth of
data, and come in four time formats per fil-
ter, current day, weekly, monthly, and yearly.



BPF filters and hardwired scalar filters both pro-
duce small sets of integer counters bound to a
user-supplied (BPF) or hardwired (scalar) filter
name. For the purpose of this paper, we can ne-
glect the user-programmable BPF mechanism as
it is primarily useful in terms of network manage-
ment and has little role to play in our discussion
of botnet detection. As a result we will focus
on the other two kinds of filters in the front-
end: list-based filters (where memory is dynami-
cally allocated), and scalar filters that consist of
a small set of scalar integer counters.

Scalar filters are graphed in the back-end using
RRDTOOL stripcharts and have a few integer
counters per graph. Ourmon uses RRDTOOL
to construct graphs based on various individual
integer counters. See figure 1 at the end of this
paper for one example of an BPF/RRDTOOL
graph. This particular graph shows total IRC
message counts in our DMZ for the four funda-
mental IRC message types parsed by the front-
end IRC tokenizer, JOIN, PING, PONG, and
PRIVMSG IRC commands. ! The graph illus-
trated is a weekly graph and illustrates the effect
an on-campus botserver had on basic message
counts during the November 2005 thanksgiving
weekend. We will discuss this graph more below.

List-based filters are an innovative part of the
Ourmon system. One of Ourmon’s design goals
is to allow the construction of first-order tu-
ples with unique keys as opposed to second-order
parsing of traditional flow data. Thus our front-
end can aggregate data and we do not need to
store all flows. Where possible the high-level
goal is to point out the big picture as opposed
to swamping an analyst in unnecessary details.

'!Our campus network has over ten thousand live
switch ports, and peak traffic runs around 200 megabits
total to and from the Internet.

Another difference with traditional flow storage
is that we are willing to look at Layer 7 payloads
as this is very necessary for determing P2P data,
IRC channel names, and message types. List-
based filters currently include traditional flow tu-
ples with a 5-field index, top talker L4 TCP and
UDP ports with ports as an index, top talker
scanners with IP source addresses as an index,
and four kinds of tuples that are of interest to
botnet detection including the following;:

1. the TCP syn tuple - this tuple is per IP host
and counts TCP control packets as well as
other counters. It also includes a set of sam-
pled destination ports which is not of inter-
est here, but is very useful for helping an
analyst get the big picture for TCP-based
scanning and worm detection. We will dis-
cuss this tuple more below as it is impor-
tant to our anomaly-based botnet detection
scheme.

2. the UDP/ICMP error tuple - this tuple is
similar in design to the TCP syn tuple and
for the most part focuses on UDP scanners.
It is also keyed on an IP host. It is not
currently used for botnet detection, but will
play a role in our future efforts aimed at en-
crypted mesh detection. We will not discuss
this tuple in more detail - if desired please
see [12] for more information.

3. the IRC channel tuple - this tuple is keyed
to an TRC channel name, and collects a list
of IP sources (hosts) associated with that
channel, as well as basic message counts for
IRC messages associated with the channel.
As a result we can collect a complete set of
IRC channel names.

4. the IRC host tuple - this tuple compute var-
ious statistics for IP hosts found in IRC



channels. Data includes counters for IRC
message types, and also a very valuable
piece of information extracted from the
TCP syn tuple for the host in question.
This heuristic attribute is a weight called
the TCP work weight and informally tells
us whether or not a host has been acting as
a TCP scanner.

In summary, our current botnet detection sys-
tem uses the TCP syn, IRC channel, and IRC
host list tuples. We also intend to implement
a new sub-system that will look for ”stealthy
meshes” by which we mean a Layer 7 mesh that
may be using Layer 7 encryption. This new sys-
tem will use the UDP/ICMP error tuple as well.

In the next section we will look at our current
botnet detection system in more detail and also
provide examples of how Ourmon has detected
botnets on our campus.

3 Current Ourmon Botnet Ar-
chitecture

In this section we first discuss some important
background assumptions in terms of IRC and
botnets and then proceed to explain our current
Ourmon IRC detection architecture used for de-
tecting IRC-based botnets. We then show how
our system has worked in the last year with two
examples of captured attacks from fall of 2005.
One example is of a large botnet server detected
on campus. The other is of a more modest client
botnet detected in our dormitories. We first
deployed our TRC measurement system in the
spring of 2005. Since that period we have seen
numerous examples of small botnets with servers
off-campus, and three examples of large botnets
with the botnet server located on campus.

We assume the reader is familiar with the IRC
architecture, although in point of fact IRC is a
very loose phenomenon and there is no guaran-
tee that any bot network using IRC necessarily
strictly conforms to IETF notions of IRC as a
protocol. Please see the honeynet project [8] for
further information on botnets. For further IRC
information please see wikipedia [17] as well as
the fundamental IRC RFC [10].

Before we present our architecture, there are a
number of points that need clarification. First of
all we do not rely on ports for capture of any IRC
information. For example, it cannot be assumed
that botnet control plane IRC traffic uses the
traditional IRC server destination port of 6667.
This is certainly the case with botnets that we
have observed as any port may be in use at any
time and may change at any time. Our IRC
analysis software does not currently use ports in
any way.

When we use the conventional term botnet
we have not said whether a botnet is good or
bad. Botnets seem to have originated from IRC-
based command subsystems that were used for
file copying (of so-called ”warez” meaning ill-
gotten files, which may include data including
audio or video recordings or pirated software).
Botnets may be games, reminder systems, or
other relatively benign systems that attempt to
fool people on conventional IRC chat channels
into conversations with automata.

For the rest of our discussion, when we re-
fer to a botserver mesh, we are talking about
an instance of a ”evil” botserver on our univer-
sity network. Note that typically an on-campus
botserver will have thousands of off-campus cap-
tive hosts in a few IRC channels. The botserver
meshes we have seen vary from 30000 hosts to
60000 hosts. Normal IRC servers used for chat
on our campus never have more than one hun-



dred hosts and usually have far less hosts in any
channel. When we refer to a botclient mesh, we
mean a set of communicating hosts with the bot-
server off campus. Examples of this phenomenon
as seen on our campus have a few tens of captive
hosts at most.

How then do we know if a botserver or bot-
client mesh is malign? There are two ways. First
within our own Ourmon system, we know that a
botclient mesh is malign by observing the num-
ber of anomalous TCP-scanning hosts in a given
IRC channel. Roughly if an IRC channel called
”F7” has ten hosts, with nine clients and one ex-
ternal server, and a majority of the IRC client
hosts have been spotted during any period of the
day performing TCP SYN scanning we can as-
sume that the mesh in question is malign. 2

The second mechanism for determination of
”badness” is to simply extract the IRC channel
server or server addresses from our Ourmon re-
ports, and use a well-known tool like "ngrep” to
investigate particular IRC hosts or channels for
IRC messages. Fundamentally an analyst can
observe the message traffic and decide if a ma-
lign botnet is active. In addition, one can ob-
serve botnet messages that may be familiar or
unknown to the analyst and learn what kinds
of botnet messages may exist. For example,
one may see message traffic like ”exploited ip”
or ”lsass scan” commands. We originally used
ngrep daily over a period of six months (winter
2005 to summer 2005) to gain confidence in our
Ourmon system. At this point we do not feel the

2Note that a botclient mesh is harder to spot than a
botserver mesh. Botserver meshes are in fact trivial to de-
tect simply because their IRC message statistics are com-
pletely outlandish when compared to normal IRC chan-
nels. This is true in terms of message counts and other
anomalies seem to exist as well. We will return to this
subject below.

need to use it any more to prove that a botnet
mesh is "evil” and feel that we can completely
rely on Ourmon data. Of course ngrep is still
useful for forensic reasons to learn more about
the current message set used by botnets. This
information can prove useful in terms of forensic-
based cleanup and analysis of infected hosts. It
is quite reasonable to regard ngrep and Ourmon
as companion tools. Ourmon provides the big
picture, pointing out the IP addresses in a bot
mesh, and ngrep can provide details about the
botnet code and attacks.

We should further point out that we live on
a busy university network and IRC is popular
on campus for conventional reasons. As a con-
sequence, we believe that we have a very good
basis for observing both bad and ”normal” IRC.
In this paper, we do not choose to define the use
of IRC for multimedia file exchange as a security
problem, although others might have differing
opinions.

As mentioned previously IRC is a very fuzzy
protocol. Our IRC network extraction system
is based on parsing L7 payload data and as
a result tries to focus on statistics for as few
IRC message types as possible including JOIN,
PRIVMSG, and PING and PONG. We believe
that these messages are typical of IRC in general
and that various forms of IRC software conform
with a high degree of generality in how these
message types are used. JOIN and PRIVMSG
both provide channel names. PRIVMSG is used
for data payload exchange (chat traffic or bot
commands). JOIN, PING, and PONG are all
used to keep IRC meshes fresh in terms of client-
server state. Some meshes may use JOIN alone
to keep the net fresh. Some may rely more on
PING and PONG. Thus we define IRC in a very
restricted sense (four message types, with JOIN
and PRIVMSG providing channel names). The



implicit goal is to use a relatively simple mecha-
nism to capture IRC traffic, illicit or otherwise.

We observe that botnet detection is not prin-
cipally a ”"real-time” or near real-time phe-
nomemon. On our campus normal IRC traffic
is slow and is driven by human chat. This is also
generally true of botnets as well, although benign
automated channels may exhibit higher traffic
levels than normal human chat channels. Even
the control plane of TRC consisting of JOIN,
PING, and PONG messages may be as slow as
one message per minute. Thus one of the prin-
ciple tenets of our system, is that while we do
gather data every thirty seconds, we perform
hourly analysis of IRC data during the current
day. Thirty-second analysis will show which IRC
nets are alive "now”, but the hourly analysis is
more useful and can thus deal with the relatively
slow phenonmenon of IRC traffic. Another rea-
son for hourly analysis is that botnet scanning
is turned on or off by remote commands, and
an analyst who only observes "now” can eas-
ily miss the activation of a scanning network or
host. Thus we believe it is crucial to analyze IRC
data over a longer period of time (hours and/or
days). As a result, in addition to hourly reports
during the current day, Ourmon also provides a
week worth of summarized IRC reports (which
are summarized at midnight of the current day
and rolled over to the previous day). An analyst
can both study the current day’s data and may
also use previous days in the week to study the
history of a channel of interest.

One of the problems with botnets which has
not been alluded to elsewhere, is that hosts using
P2P programs like Gnutella may at times appear
to be TCP scanners. 3 In general one can ob-

3Possibly because our approach to botnet detection is
anomaly-based and also because our Ourmon system was

serve that P2P software has two architectural
tenets: 1. a host must somehow keep a list of IP
peers, and success in P2P terms involves keep-
ing that list (or cache) fresh, and 2. given the set
of cached IP peers one tries to contact them (in
parallel) using TCP to exchange data. If the set
of cached peers are unreachable for some reason
(possibly due to a stale IP cache), an unsuccess-
ful P2P client may make a host appear as a TCP
scanner. Because our botnet detection system
relies fundamentally on TCP scanner detection,
it can occasionally become important for us to
determine if an individual botnet client host is a
P2P-based host. Ultimately P2P determination
helps us in some cases to rule out false positives.
As a consequence Ourmon can detect some forms
of P2P and anomaly-based P2P detection is an
area of active research for us. We will not say
much more about this topic in this paper, but
we do want to point out that P2P detection and
botnet detection are not completely unrelated.

Current TRC Botnet Detection
Architecture

3.1

In this section we will present the current Our-
mon architecture for botnet detection. We point
out that our system is not signature-based in any
way — it does not use ports or known botnet com-
mand strings. It is completely anomaly-based.
Our architecture principally relies on the ob-
servation that IRC hosts are grouped into chan-
nels by a channel name (for example, "F7”, or
”ubuntu” might be channel names), and that an
évil channel is an IRC channel with a majority of
hosts performing TCP SYN scanning. This al-
lows us to detect botclient meshes and to a lesser
extent even seems to work for botserver meshes.

born on a university network where P2P is popular.



Additional simple but important anomalies
exist for botserver meshes including the count of
IP hosts in a channel, and the average number of
PINGS/PONGS per time period for a channel.
Counting IP hosts per channel can be viewed as
the fundamental way to detect a botserver mesh.
When compared to ordinary chat IRC channels,
hosts per channel, PING/PONG counts, and
even basic messages per server, typically go off
scale with on-campus botservers due to the size
of the meshes (per channel host counts) involved.
It should be pointed out that it is always possi-
ble that an IRC botnet server might infect on-
campus hosts and thus all the TRC measures
mentioned above can be important.

The front-end Ourmon probe gathers three
kinds of list tuples that are useful for IRC and
botnet detection. The tuples consist of two kinds
of IRC tuples and the TCP syn tuple. The probe
gathers these tuples over its thirty second sam-
pling period. AIlIRC tuples are sent to the back-
end for further processing. In the probe, the
entire campus TCP syn tuple is filtered into a
smaller subset which informally consists of hosts
observed sending anomalous amounts of TCP
syns. This syn tuple subset is called the ”worm
set” and is typically orders of magnitude smaller
than the entire set of IP sources found in the
campus TCP syn set. It can be regarded as the
set of TCP scanners.

The TCP syn scanner list tuple has the fol-
lowing rough form:

(IP source address, SYNS, SYNACKS,
FINSSENT, FINSBACK, RESETS, ICMP ERRORS,
PKTSSENT, PKTSBACK, APPFLAGS,

port signature data)

The logical key in this tuple is an IP source
address. SYNS, FINS (all kinds), and RESETS

are counts of TCP control packets. SYNS are
counts of SYN packets sent from the IP source,
and SYNACKS are a subset of only those SYNS
sent with the ACK flag set. FINS sent both
ways are counted. RESETS are counted when
sent back to the IP source. ICMP ERRORS
refers to certain ICMP errors like unreachable
or TTL errors returned by receivers. The PK-
TSSENT counts the total packets sent by the
IP source. PKTSBACK counts the total pkts
returned to the IP source. APPFLAGS is signa-
ture based and shows whether the host was per-
forming IRC, or P2P traffic based on a few pop-
ular P2P protocols including BitTorrent, Edon-
key, and Gnutella. There is also a small fixed set
of sampled TCP destination ports that we will
neglect here.

This information is useful for determing what
kind of scanning is occuring and often gives a
rough network-based indication of the kind of
exploit in use. *

We define a metric which we call the TCP
work weight. The work weight is easy to compute
and is computed by the probe per IP source as
follows:

w = (Ss+FS+RT)/TST

It is expressed as a percent. The rough idea
is that we take the count of TCP control pack-
ets and divide that count by the total number of
TCP packets. Obviousally 100% here is a bad
sign and implies a true anomaly of some sort.
Such a value is typically associated with a scan-
ner or worm. The TRC module in the probe uses
the TCP list as an underlying ”tool”, and ex-
tracts the TCP work weight from it for any IRC
host.

41t can be useful to note when a host is scanning ports
445 or 139, as such scanning is often part of the botnet
phenomenon.



We should point out that we have over two
years worth of experience with the work weight
at this point. We have learned that high work
weights with hosts are caused by three possi-
ble causes including 1. scanners (typically syn
scanners), 2. clients lacking a server for some
reason or 3. P2P hosts (usually Gnutella is the
application) which cannot for some reason find
a fresh set of IP peers. In general scanners are
the most common reason for a high work weight.
We also know that that the work weight clusters
into either high values (say 70..100%) or low val-
ues (say 0..30%). Attackers fall into the higher
range. P2P clients on average fall into the lower
range.

Typically the average over many samples is of
interest. However in the case of IRC we decided
to simply take the maximum work weight seen
over all the thirty second samples for a day. This
is because an otherwise normal host may be or-
dered remotely to do scanning for a short period
of the day. One host by itself in an IRC channel
with a high work weight may not be anomalous.
However if a channel has ten hosts out of twelve
with high work weights suspicion is justified. As
a result, work weights associated with IRC chan-
nels in our summarization reports are maximum
weights seen across all the samples in a daily re-
port.

There are two IRC lists, called the channel
list and the node list. The channel list has the
following tuple structure:

(CHANNAME, HITS, JOINS, PRIVMSGS,
NOIPS, IP_LIST}

The channel name is the case-insensitive
IRC channel name extracted from JOIN and
PRIVMSG IRC messages by the IRC scanner.
The probe’s scanner is hand-crafted C code that
looks at the first 256 bytes of the L7 payload

for TCP messages only and extracts IRC tokens
for the four kinds of messages of interest. HITS
is the total count of JOINS and PRIVMSGS,
JOINS and PRIVMSGS are counts of that par-
ticular kind of message. NOIPS is the number
of TP addresses in the IP_LIST, which follows
the tuple. Thus a channel tuple gives a key (the
channel name) with a few message count statis-
tics and a list of IRC hosts in the channel ex-
pressed as IP addresses.

The node list gives per IP statistics for any
IP address in any IRC channel. Informally a
channel may be viewed as a directory, and a host
may be viewed as a directory entry (although a
host may actually be in more than one channel).
The node list has the following tuple structure
(not all counters shown):

(IPSRC, TOTALMSG, JOINS, PINGS, PONGS,
PRIVMSGS, CHANNELS, SERVERHITS, WW}

The key per tuple is an IP source address. Vari-
ous message statistics are given including JOIN,
PING, PONG, and PRIVMSG counts. The
number of observed per host channels is sup-
plied. SERVERHITS indicates the number of
messages sent to/from a host. Thus this counter
indicates whether a host is acting as an IRC
server. The WW (work weight) as mentioned
previously is derived from the TCP syn module.

One additional IRC statistic is gathered by the
front-end which consists of total counts of the
four kinds of IRC messages seen by the probe
during the sample period. This tuple is displayed
by the back-end as an RRDTOOL-based graph
and we will see an example of it below. Note
that its values are for the network as a whole
and are not per channel or host.

The IRC tuples are passed to the backend for
report generation. The backend program pro-
duces an hourly text report (updated on the



hour) which is called ircreport_today.tzt. This
file is available on the web for analysis. Data
in this report is broken up into three major sec-
tions including global counts, channel statistics,
and per host statistics. Channel statistics and
per host statistical sections are further broken
up into various sub-reports where data is typi-
cally sorted by some key statistic.

We can distinguish the following IRC report
sub-sections:

1. evil channels - channels with too many hosts
with a high work weight

2. channels sorted by maximum messages.

3. channels with host statistics - each channel
shows the host IP in the channel with host
stats.

4. servers sorted by max messages - hosts that
are IRC servers are sorted by max messages.

5. hosts with join messages but no privmsgs -
JOINSs only but no data payloads.

6. hosts with any signs of worminess - hosts
with high work weights.

For purposes of illustration in table 1 we look
at one benign example which comes from the
per channel host statistics section. Counts given
for our example were taken from twelve hours of
data (since midnight) and are typical for a small
IRC chat group. °

In our example 1, a channel named ”ubuntu”
has four hosts in it. Three are local and the

SAll TP addresses have been changed and are repre-
sented as symbolic addresses. In addition the reader
should note that our current output format is simply an
ASCII report. However we represent it here in tabular
format.

server (S) is remote. Total message counts (of
the 4 kinds parsed) and JOIN, PING, PONG,
and PRIVMSG counts are given. Maxchans is
the number of channels seen during the period
for that host, and maxworm is the maximum
work weight seen. We do not believe this channel
based on the above data is "evil”.

Now let us see how this data may be corre-
lated to plainly point out anomalous IRC-based
botnet behavior.

3.2 Botnet Examples

Let us look first at the relatively simple case of
a botclient mesh. The server is off-campus and
a few hosts have been captured on-campus to
become part of the botnet. We look at two sub-
sections of the hourly IRC report to find our evil
channel which is named "F7”. We look at our
evil channel sort, and discover that F7 shown in
table 2 is named as a channel in that list and
occupies a high rank in the list.

Channel F7 is high in the evil channel list sim-
ply because it has 4 out of 6 hosts with high work
weights. The ”evil” flag at the end of the column
is set to E if a potential evil channel has more
than 1 anomalous host. Next we look at the re-
port sub-section which breaks host statistics out
for the channel F7.

In table 3 we see the part of the report that
shows hosts in a channel. In channel F7, we
have one remote server and five infected local
hosts. Four of those hosts have very high max-
imum work weights. We know from experience
with the work weight (and also by looking at
logs from both Ourmon and other systems) that
the hosts are performing SYN scanning. Our-
mon logs for the syn tuple will typically show
that the hosts in question have been performing
scanning aimed at Microsoft exploits on port 445



Table 1: Benign IRC Channel - Channel/Host Report
channel /ip tmsg | tjoin | tping | tpong | tprivmsg | maxchans | maxworm | server
ubuntu/netl.hostl | 11598 | 1282 | 1912 | 1910 6494 4 43 H
ubuntu/netl.host2 | 7265 | 938 619 622 5086 3 0 H
ubuntu/netl.host3 | 17218 | 1926 | 4123 | 4100 7069 5 37 H
ubuntu/net2.hostl | 28152 | 3222 | 3913 | 3904 17113 8 0 S

Table 2: Malign IRC Client Botnet - Evil Channel Report

channel

msgs

joins

privimsgs

ipcount

wormyhosts

evil

F7

118

19

99

6

4 E

Table 3: Malign Botnet Channel F7 - Channel/Host Report

channel/ip | tmsg | tjoin | tping | tpong | tprivisg | maxchans | maxworm | server
F7/netl.1 | 1205 24 377 376 428 2 42 H
F7/netl.2 113 6 39 43 25 1 96 H
F7/netl.3 144 2 60 61 21 1 94 H
F7/netl.4 46 3 12 14 17 1 90 H
F7/netl.5 701 2 343 345 11 1 90 H
F7/net2.1 | 1300 19 587 593 101 1 16 S

10



(typically lsass-based exploits, for example, see
5).

We have used ngrep in the past to prove be-
yond a shadow of a doubt that examples like our
F7 botnet client are indeed malign. At this point
in time, we no longer feel the need to use a tool
like ngrep to prove that ourmon has detected an
evil mesh. However the reader might desire to
see such proof and in addition ngrep can still be
very useful to aid in host forensics. For example,
one may be able to gather valuable clues about
the exploit used. An ngrep sent from a local
client to the server in question (net2.1) showed
messages like the following:

# ngrep -q host net2.1
T net1.1:1053 -> net2.1:30591 [AP]"
PRIVMSG #F7 :[Lsass]: Fuxed IP: netl.2

Here we see a report from a bot client back to
the server that host netl.2 has been exploited.
The exploit used is also mentioned.

Next we turn to botserver mesh detection. In
point of fact, detecting a botserver in a net-
work domain is fairly trivial once you know the
7signs”. We can distinguish at least four kinds
of anomalies and there are probably more sim-
ply due to the large amounts of IRC traffic. The
main fact to note is that a ”successful” botserver
will produce many messages. Over thanksgiving
2005 (when IT staff were on vacation), our cam-
pus experienced the largest botserver we have
ever seen. We believe that the botserver in ques-
tion at its peak had around 60000 hosts (all off
campus) reporting to it. We should point out
that as is generally the case with anomaly de-
tection, the analyst should have some notion of
normal in terms of local domain statistics. In
this case one has to have observed local IRC ac-
tivity to know what is unusual. Even so, a bot
server is easy to spot.
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Outstanding anomalies included:

1. the number of hosts per channel is a very
strong indicator of a botserver.

2. the number of messages for any given TRC
server is a strong indicator.

3. the overall basic IRC message counts for our
network domain as a whole are a strong in-
dicator.

4. lastly it can sometimes be the case that the
overall number of wormy hosts (high work
weights) counted in our entire network (and
within the bot server’s IRC channel) be-
comes very high.

We do not currently have a sort for hosts per
channel but we note anomalies one, two, and
four in our list above by looking at our ”channels
sorted by max messages” subsection as seen in
table 4.

From experience we know that ”studentchan-
nel” is benign (although automated in terms of
both JOINS and PRIVMSGS), and in any case
has a historically normal count of messages and
hosts. On the other hand, channels f, x, and
f-exp are new. The message count for f alone
is historically very high and an order of mag-
nitude higher when compared to ”studentchan-
nel”. The above statistics are for the entire day,
and busy chat channels on our campus driven by
human text messages usually have no more than
2000 messages in one day. Therefore channel x
and its 40965 PRIVMSGS are an anomaly. A
more significant anomaly appears with the ip-
count (number of hosts in the channel) for the
three channels in question. On our campus we
have never seen a normal chat IRC channel with
more than 100 hosts in it. Of course, further



Table 4: Malign IRC Botnet Server - Max Messages in Channels Report

channel msgs joins | privmsgs | ipcount | wormyhosts | evil
f 157403 | 156956 447 36727 1704 E
X 81161 40196 40965 13821 712 E
f-exp 20845 0 20845 5074 562 E
studentchannel | 11560 5509 6051 12 0

analysis shows that these numbers are even more
significant because the three channels in ques-
tion are shown elsewhere to share the same bot-
net server. The number of hosts with high work
weights in the channels is also an interesting
anomaly.

In table 5 these three channels along with a
fourth related channel called ”exp” all appeared
at the top of our evil channel subsection on the
first day of the botnet server.

We frankly do not completely understand why
botservers tend to appear in the evil channel
list. Given that we know that one local cam-
pus host is acting as the server for the chan-
nel, this means that remote hosts are sending
anomalous amounts of TCP syns to our cam-
pus. It is of course possible that those hosts are
attacking our campus, but data from the TCP
syn report shows that those hosts are trying to
contact only the server itself. We suspect this
is because the botserver has somehow stretched
its own host resources to the limit, and simply
cannot respond to any other hosts that are try-
ing to join the botnet. Thus these remote hosts
appear as SYN scanners, but actually are bot-
net client hosts trying to connect over and over
again to their server. Figure 2 shows our so-
called "worm graph” which in summary graphs
the total number of scanners dividing them two
sets, off-campus (red) and on-campus (green).
In this case the number of hosts with high work
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weights seems to be a side effect of the botserver
mesh "at work”. The number of scanners is of
course less than the total number of clients, be-
cause most clients are connected.

Let us turn to anomaly number three. In
a previous section we mentioned that we keep
global count statistics for all IRC messages on
our network and graph them using the RRD-
TOOL graph mechanism. Please refer to Figure
1. This graph shows a weekly view of the four ba-
sic IRC message types. Normal daily counts for
all message types are typically in the hundreds.
Here we can see that on Friday and Saturday
PING and PONG messages suddenly are in the
thousands. In all three bot servers we have seen
on campus, PING and PONG messages were al-
ways elevated. In one case, PRIVMSG was ele-
vated as well. All bot servers so far have been
enough to significantly perturb this graph. This
is easy to understand because the PSU campus
as a whole at peak periods sans a botserver has
only a couple of hundred IRC hosts total.

Because of our experience with botservers, we
are in the process of making some short-term and
simple modifications to Ourmon to improve its
ability to point out botserver related anomalies.
Ourmon has an event log which in theory points
out significant security-related events including
large outburst of UDP packets, and large counts
of hosts with high work weights. We have added
an IRC-related event that reports an IRC chan-



Table 5: Malign IRC Botnet Server - Evil Channel Report

channel | msgs joins | privmsgs | ipcount | wormyhosts | evil
f 157403 | 156956 447 36727 1704 E
X 81161 40196 40965 13821 712 E
f-exp 20845 0 20845 5074 562 E
exp 6825 0 6825 423 101 E

nel with a large number of hosts.

are no anomalies.

As our technology depends

4 Related Work

In general the academic literature on botnet de-
tection is sparse. Furthermore we are not aware
of any other anomaly-based system for detection
of botnets. Known techniques include honeynets
and IDS systems with signature detection. Hon-
eynets [8] or darknets might be distributed [1] or
local and can certainly prove beneficial in terms
of providing information about botnet technol-
ogy. However they may not be easily deployed
in a commercial environment and do not neces-
sarily help with the question of whether host X
has worm Y. Knowledge of useful signatures and
behavior of existing botnet systems is another
venue for detection. The paper [2] presents a
good introduction to botnets and analyzes bot-
net architecture. An open-source system like
snort [14] with rules from [4] can be used for
detection of known botnets.

The problem with signatures is of course one
may lack the required signature for a bot known
elsewhere, or a bot may be new to the world, lo-
cally unknown, or changed, thus defeating previ-
ously known signatures. Anomaly detection on
the other hand may detect such a system. Prob-
lems with anomaly detection can include detec-
tion of an IRC network that may be a botnet but
has not been used yet for attacks, hence there
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on hackers actually launching attacks, there is
no guarantee that we can detect every infected
system. One can also argue that anomaly detec-
tion is "too late”. It is certainly better to detect
an initial attack with a signature when it first
occurs and get an exploited system fixed before
it is used for spam or denial of service attacks.
We believe signatures and anomaly detection are
often complimentary and should not be viewed
as somehow competitive. All of these techniques
(honeypot, IDS, and anomaly detection) can be
useful and provide slightly different set of infor-
mation.

5 Conclusion

In this paper we have presented our current sys-
tem for bot anomaly detection. We discussed
how we combined TCP-based anomaly detection
with TRC tokenization and TRC message statis-
tics to create a system that can clearly detect
client botnets and how also gross statistical mea-
sures can easily reveal bot servers. This system
is currently deployed in our network and works
well.

The white paper [6] calls for systems to de-
tect botnets via more robust detection means.
We believe our current anomaly-based detection
system is an advance in the art, but it could be
easily defeated by simply using a trivial cipher



to encode the IRC commands. As a result we
would lose information about mesh connectiv-
ity. On the other hand we believe that detection
and correlation of attacking meshes of hosts is a
valuable contribution. For future work, we in-
tend to refine and generalize our weight system
and determine connectivity at layer three. We
believe that we should be eventually able to de-
tect anomalous meshes based only on layer 3 and
layer 4 statistics.
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Figure 1: Thanksgiving Botserver IRC Message Counts
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Figure 2: TCP Scanners During Bot Attack
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