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Abstract—Rapidly detecting and classifying malicious 
activity contained within network traffic is a challenging 
problem exacerbated by large datasets and functionally limited 
manual analysis tools.  Even on a small network, manual 
analysis of network traffic is inefficient and extremely time 
consuming.  Current machine processing techniques, while 
fast, suffer from an unacceptable percentage of false positives 
and false negatives.  To complement both manual and 
automated analysis of network traffic, we applied information 
visualization techniques to appropriately and effectively bring 
the human into the analytic loop.  This paper describes the 
implementation and lessons learned from the creation of a 
novel network traffic visualization system capable of both real-
time and forensic data analysis.  Combining the strength of 
link analysis using parallel coordinate plots with the time-
sequence animation of scatter plots, we examine a 2D and 3D 
coordinated display that provides insight into both legitimate 
and malicious network activity.  Our results indicate that 
analysts can rapidly examine network traffic and detect 
anomalies far more quickly than with manual tools. 

 
Index terms—security visualization, network visualization, 

real-time visualization, forensic visualization, honeynet 
visualization, honeypot visualization 

I. INTRODUCTION 

The Internet has become one of the nation’s critical 
infrastructures. The large amounts of data transmitted 
over typical networked systems render it difficult to spot 
activities by malicious adversaries. This poses a challenge 
equivalent to “finding the needle in the haystack.” Even 
using high signal to noise ratio (malicious traffic/ 
legitimate traffic) techniques, such as honeynets or 
security exercises on isolated networks, analysts are still 
confronted with large datasets requiring analysis. Packet 
capture logs from small scale 2-3 day security exercises 
are on the order of hundreds of megabytes. Even 
university-level honeynets, which are computer networks 
with no production value that are set up specifically to 
watch for network attacks and, by definition, are subject 
to only malicious activity and no legitimate traffic, collect 
1-10 megabytes of traffic per day. At one extreme, 

analysis is conducted using user-customized scripts in 
parsing languages like Perl to parse the data and produce 
useful information. At the other extreme, machine 
processing is used to sift through, consolidate and 
evaluate data. These machine processing methodologies 
are highly automated and thus not very adept at 
recognizing new and unexpected characteristics.  In 
particular, they may abstract away important information 
without the knowledge of the human operator.  A more 
powerful, and as yet predominately untapped, means of 
analysis is to use visualization to allow human undirected 
(getting a general overview about occurrences on the 
network) as well as directed (displaying and analyzing 
information regarding a specific incident) processing of 
the data.  

Most security tools generate data so prolifically that 
they waste the precious resources of human time and 
attention.  As a result, users are unable to efficiently and 
effectively analyze traffic patterns, easily monitor their 
networks, rapidly identify attacks, and respond quickly. 
We believe that carefully crafted tools and application 
specific visualizations can complement previous 
approaches by presenting the human with the right 
amount of information in the right form of presentation at 
the right time.  Our constant battle with information 
overload during daily analysis activities, in particular with 
the Georgia Tech Honeynet, motivated us to investigate 
more human-centric, scalable techniques for the analysis 
of security data sets.  Our primary design goal was to 
meet this need by designing a visualization system that, 
when appropriately combined with existing technologies, 
makes the most effective use of human resources.   

The primary contribution of this work is the novel use 
of tightly-coupled, animated, time-sequence scatter plots 
and parallel coordinate plots in both 2D and 3D to rapidly 
analyze network traffic.  In addition, we explore the 
effective use of labeling, animation, scaling, and fading as 
well as interaction techniques to cope with extremely 
large ranges of categorical and discrete numeric data.  We 
validate the efficacy of these results by performing 
analysis of real-time and forensic network traffic from 
several domains:  

• A very active, large-scale university network with 
two /16 networks and one /17 network. 
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• Live capture from a university honeynet as well as 
three years of continuously archived honeynet 
packet captures. 

• Over 80GB of novel capture data from five large-
scale botnets collected using a darknet. 

 Our results indicate that the system provides the 
capability to rapidly scan large datasets of network traffic 
for malicious activity despite the visual noise of 
legitimate, or less important traffic as well as facilitates 
“at a glance” insight directly supporting network 
monitoring, intrusion detection and attacker behavior 
determination.   

 Section 2 places our work in the field of current 
research.  Section 3 describes our system design and 
implementation.  Section 4 presents our results and 
evaluation.  In sections 5 and 6 we propose areas for 
future work and present our conclusions.  Note that, due 
to the intensely graphical nature of our work, we suggest 
that, if possible, you refer to the electronic edition of this 
document to view the full color images.  

II. RELATED WORK 

Information visualization is a mature field with a wide 
range of techniques that have been successfully applied to 
many domains.  See the work by Tufte [1,2,3] and Spence 
[4] for excellent surveys of the field. But only recently 
has work been done in earnest to apply these techniques 
to network security and other related information 
assurance problems.  Examples include Girardin [5] who 
used self-organizing maps to detect malicious network 
activity and Nyarko [6] who used haptic feedback to find 
suspicious activity in network traffic.  Another interesting 
example is the Spinning Cube of Potential Doom [7], 
which visualizes real-time port and IP data in a three-
dimensional cube as a rotating scatter plot.   While quite 
useful to see coarse trends in large-scale networks, it lacks 
animation, multiple visualizations and interactive 
capability.  The visualization system we outline in this 
paper combines animated scatter plots with parallel 
coordinate plots.  The notion of parallel coordinate plots 
was first proposed by Inselberg [8].  Several researchers 
have applied the technique in the network security 
domain, including Marchette [9], Conti [10], and the 
National Center for Advanced Secure Systems with their 
VisFlowConnect tool [11,12].  We extend their work by 
combining parallel coordinate views and animated scatter 
plots into a single cohesive visualization.   In addition, we 
add three-dimensional functionality that allows the user to 
zoom and pan the combined visualization. We also 
explore system performance characteristics not seen in 
other work as well as the use of fading.  Fading is used in 
Etherape, but the tool provides only a single visualization 
of network traffic arranged in a circular graph [13].  
Similarly, Erbacher [14] used a circular visualization 
composed of animated glyphs to demonstrate that intruder 

behavior is surprisingly observable.  Both of these 
approaches, while effective for moderate numbers of 
network nodes, can quickly become crowded.  Our 
combined visualization approach supports a far greater 
number of nodes.  We estimate this gain to be about an 
order of magnitude more nodes.  When combined with 
our zooming capability, this gain can reach several orders 
of magnitude, but at the cost of additional human 
interaction.  Our system also extends the work of Conti 
[10] by adding the ability to capture and display network 
traffic in real time as well as display historical packet 
capture files.  During the design of our system, we relied 
upon the work by Komlodi [15] and Fink [16] to ensure 
we incorporated real-world operator requirements.  We 
also examined best of breed open source security 
visualization tools.  Snort [17] and tcpdump [18] provide 
industry standard network monitoring capability, but only 
as textual output.  Ethereal also offers excellent textual 
output and protocol parsing, but only provides very basic 
visualization capability [19].  There are also a few high 
quality, commercial analysis tools available, which also 
fall into the area of network security visualization, 
Lancope’s Stealthwatch plus Therminator system [20] is a 
representative example, but they proved difficult to 
evaluate due to the prohibitively high cost.  In our 
research we analyzed several interesting datasets 
including botnet and honeynet traffic.  To the best of our 
knowledge, there has been no work done on visualizing 
botnets.  There has been some initial work on honeynet 
visualization.  Honeynet monitoring is typically 
conducted with ethereal, snort and tcpdump, but there are 
two tools, primarily text-based, that provide some 
visualization capability. The Honeynet Security Console 
is a useful tool to store and analyze large amounts of data 
[21].  Sebek can correlate low-level host-based data (e.g. 
launched programs, keystrokes, accessed files) with 
network data to evaluate honeynet intrusions [22]. The 
result can be visualized as a dependency graph.  Another 
useful, but again, primarily text based tool is OSSIM.  Its 
primary strength lies is the correlation of multiple data 
streams, a feature that we do not currently provide [23]. 

III.  SYSTEM DESIGN AND IMPLEMENTATION 

A. Design Overview 

The motivation for this research stems from the need to 
ease the time-consuming daily monitoring of our 
honeynet, but at the same time, provide a tool that is 
useful for both general network and security analysis. Our 
goal is to design a visualization system that makes it 
possible for the analyst to see at a glance what kind of 
activity has occurred on a network while maintaining the 
ability to also provide detailed information on the activity. 

The system supports two possible ways to input data. It 
can either display live packet capture information (real-
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time mode for monitoring), or it can be used to play back 
previously captured data (playback mode for forensics).  

B. Visualization Design 

Figure 1 shows an overview of the visualization. The 
bold left line (called the left base line) denotes the source 
IP address (0.0.0.0 - 255.255.255.255) of observed 
packets.  We chose to implement this value as a 32-bit 
integer number where 0 is at the bottom and 0xffffffff is 
at the top.  The bold right line (called the right base line) 
denotes the destination port number (0 - 65,535) where 
port 0 is at the bottom and port 0xffff at the top. Note that 
a port value of 0 is illegal according to the TCP and UDP 
specifications, but may nonetheless occur in network 
traffic. For each packet, a colored line links these two 
horizontal axes, blue for UDP and green for TCP. The 
line color fades to black over time so that old packets 
become less visible. Each packet also triggers two glyphs, 
represented by vertical lines in the 3D view, moving away 
from the left base line and the right base line over time. 
Each glyph represents a packet. The height of the glyph 
represents the packet size while the distance from the base 
line denotes the age of the packet. When a new packet is 

observed, both glyphs are on the left and right horizontal 
line, respectively. The glyphs move away from the base 
lines as the packet gets older. Figure 2 shows an example 
screenshot of the system. Additionally, we implemented a 
two-dimensional view in which packet length is not 
visualized.  See the top application window in Figure 3. 

C. Interaction Paradigm  

The user can navigate with the mouse through the 
visualization. The mouse can be used to zoom in to a 
point of interest and to pan the view. In the two-
dimensional view, zooming and panning only affects the 
y-axis so that the x-axis is still fully visible and the entire 
time window of observed packets can be seen by the user. 
In the three-dimensional view, both axes are magnified 
since the distortion would otherwise complicate the user’s 
perception and navigation through the three-dimensional 
environment. When clicking into the window, some brief 
information regarding the packet closest to the mouse 
pointer is displayed. Both glyphs of the packet are marked 
with a red diamond. At the same time, protocol, source 
and destination IP addresses, source and destination ports, 
and a hex/ASCII dump of the IP payload are displayed in 
a separate window (Figure 3). Moreover, the IP address 
and port number corresponding to the current mouse 
pointer position are displayed next to the base lines for 
orientation. 

In addition to the mouse, the keyboard can be used to 
change certain aspects of the visualization. A guiding grid 
can be turned on and off, which is particularly useful in 
the three-dimensional view mode. The time for a line to 

 
Figure 1: Visualization Overview 

 

 
 

Figure 2: Example Visualization 

 

 
Figure 3: Detailed Packet Information 
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fade and for a glyph to leave the screen area can be 
increased and decreased. In playback mode, the speed of 
the playback can be adjusted. Negative speeds allow the 
user to explore the dataset backwards in time. 

The visualization system outlined in this paper highly 
profits from user interaction and animation. In addition to 
the screenshots provided, we plan to release a version of 
our program for further experimentation to the general 
public as a part of Georgia Tech’s NETI@home project 
[24]. 

D. System Implementation 

The system is implemented using three threads, a 
graphical user interface thread, a capture thread, and a 
visualization thread. Currently, the graphical user 
interface code only runs code to display the textual packet 
detail view. 

The capture thread is responsible for packet capture and 
playback of stored packet data as well as to decode packet 
headers. The freely available libpcap library is used to 
capture packets. After decoding the packet headers, 
relevant information (a packet digest) is extracted and 
stored in a linked list. Currently, this digest includes IP 
source and destination addresses, transport layer protocol 
(TCP and UDP are supported in our current version), 
source and destination port, and packet length. 
Additionally, the first 70 bytes of the IP payload of each 
packet are also stored in memory so that the analyst can 
retrieve detailed information from each packet. 

The visualization thread traverses this list, calculates the 
age of each packet, prunes stale packet data (real-time 
mode), and displays the packet information on screen. 

In contrast to our tools presented in [10], the new 
system described here uses a retained rendering model, 
i.e. a digest of the packet data to be visualized is kept in 
memory. This design decision makes the new system 
computationally more expensive and less scalable on high 
bandwidth links, but enables features like zooming or 
fading packets over time. 

IV. RESULTS AND EVALUATION  

A. Backbone Traffic 

In this section, we provide an overview of traffic 
captured on a Georgia Tech campus backbone link. In 
Figure 4 and Figure 5, the captured data is filtered so that 
only inbound data from the Internet to the Georgia Tech 
network is visualized. Figure 4 shows a 5 second window 
of captured data.  The clutter on the bottom right is due to 
the vast amount of Microsoft Windows machines, which 
typically allocate ephemeral ports below 5000 for sockets 
they initiate. In the left and right area of the visualization, 
there are stripes of lower activity. We presume that these 
gaps are packets dropped during the capturing process due 
to the busy high speed link.  

 

 

 
Figure 4: Inbound Campus Backbone Traffic 

(5 sec) 

 
Figure 5: Inbound Campus Backbone Traffic 

(10 msec) 

 
Figure 6: Outbound Campus Backbone Traffic 

(5 sec) 
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To reduce the clutter in the middle part of the 
visualization, we changed the time window visualized to 
10 msec in Figure 5. It now becomes obvious that most 
outside machines touch low port numbers and only a few 
outside machines communicate to higher port numbers on 
the Georgia Tech campus.  

Figure 6 shows outbound traffic. The left side clearly 
shows traffic coming from Georgia Tech’s three blocks of 
network addresses. The right side shows a large number 
of ports touched. Again, low port numbers below 5000 
receive high amounts of traffic. This is due to connections 
initiated by off-campus machines picking ephemeral port 
numbers in this range. One application that results in such 
a pattern is peer-to-peer networking with Microsoft 
Windows machines. Off-campus machines connect to on-
campus peers and, by default, their operating system picks 
low ephemeral port numbers. The result is a high volume 
of outbound traffic on these ports, which normally 
indicate client applications. Currently, as indicated by 
other campus network monitoring appliances, Georgia 
Tech’s campus network carries as much peer-to-peer as 
Web traffic. 

B. Honeynet Traffic 

A honeynet is a network of honeypots, machines that are 
intended to be compromised, to provide the system 
administrator with intelligence about vulnerabilities and 
compromises within the network. A honeynet is placed 
behind a reverse firewall that captures all inbound and 
outbound data.  The reverse firewall limits the amount of 
malicious traffic that can leave the honeynet.  This data is 
surreptitiously contained, captured, and controlled.  Any 
type of network device can be placed within the honeynet, 
to include configurations identical to production machines 
elsewhere on the network.  These standard production 
systems are used on the honeynet in order to give an 
attacker the enticing look and feel of a real system.  Since 
honeypots do not offer any legitimate services to Internet 
users and the Internet addresses of the honeypots are not 
publicly known, most traffic on the honeynet is 
suspicious. 

To evaluate the effectiveness of our system, we tested it 
with a variety of archival honeynet capture files.  As an 
example, on January 25, 2003 the Slammer worm hit the 
Internet and our campus network. Slammer targeted 
Microsoft SQL Servers and machines running the 
Microsoft SQL Server Desktop Engine. The worm sent 
out its exploit code in 404-byte UDP packets to port 1434. 
Figure 7 shows 640 seconds of honeynet traffic. Clearly 
visible are many identically sized UDP packets (blue) 
targeting a single port. 

On February 22, 2004, a computer on campus 
compromised one of the honeypots.  Honeynet traffic 
jumped from 1.5 MB on February 21 to 4.5 MB on 

February 22 and back down to 0.5 MB on February 23.  It 
took several days of studying the logs to identify exactly 
when the compromise occurred. Figure 8 demonstrates 
that using the visualization system, the compromise traffic 
is easily observed; the timestamp in the display directs the 
analyst to the exact point in the capture log to begin 
detailed analysis. The left IP plane shows that all traffic 
occurs inside the Georgia Tech address range. This 
significantly reduces the time required to conduct forensic 
analysis. A network administrator using this tool could 
also identify this type of abnormal traffic in real time 
using our visualization system. 

C. Botnet Traffic 

Compromised machines on the Internet are often 
connected to so-called botnets by their attackers. The 
attacker maintains a large number of machines under his 
or her control and can leverage the connectivity of these 
machines to initiate distributed denial of service attacks or 
send out unsolicited bulk email (spam).   

 

 
Figure 7: Honeynet Traffic during the Slammer 

Worm Attack 

 
Figure 8: Honeynet Compromise Traffic 
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Researchers at Georgia Tech were able to gain control 
over several dynamic DNS entries used by botnets to 
contact a master server. These DNS entries have been 
redirected to sink machines on the Georgia Tech network. 
Compromised machines trying to contact their master 
server are directed to this local sink, and their connection 
attempt is logged. 

Figure 9 shows the inbound traffic to one sink machine. 
Machines from distinctly visible netblocks on the Internet 
try to connect to a single port on the sink machine. This 
results in an image similar to the Slammer worm 
visualization. Similar to the honeynet, the sink machines 
have no configured services for public use, so 
communications from machines all over the Internet to a 
single port should raise suspicion by the analyst. 

Figure 10 shows the outbound traffic from the same 
sink machine. A single machine, the sink, on the left side 
replies to numerous destination ports depicted on the right 
side of the visualization. Again, many machines in contact 
with the sink chose low ephemeral ports, which we 
attribute to Microsoft Windows systems being in contact 

with the sink. Note that this assumption is a rough 
heuristic only.  Although we observed this phenomenon 
during our earlier work [10], clearly other, less popular, 
operating systems besides Microsoft Windows also 
choose such low ephemeral ports. Moreover, network 

 

 
Figure 9: Inbound Botnet Traffic 

 
Figure 10: Outbound Botnet Traffic 

 

 

 

 
Figure 11: Constant Bitrate UDP Traffic 

 
Figure 12: Combined Botnet/Honeynet Traffic 

 
Figure 13: Port Sweep 
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address translation appliances, which are found in many 
home networks, may change the ephemeral port number 
chosen by the originating operating system. 

D. Distinctive Visual Patterns 

Our analysis has shown that, even in this straightforward 
visualization, distinctive patterns can easily be detected 
by the human observer. First, we show how flows sending 
at different rates can be distinguished. The visualization 
in Figure 11 is based on four constant bit rate UDP 
senders and one additional TCP sender. From bottom to 
top, the UDP senders send at 10,000 bps, 20,000 bps, 
50,000 bps, and 100,000 bps. The TCP sender is a text-
based application running over SSH. The differences in 
bandwidth consumption are easily visible to the human 
eye. The flow of packets results in a fence-like pattern 
loosely corresponding to the bandwidth a flow consumes. 

Figure 12 shows 1280 seconds of combined botnet and 
honeynet traffic, both inbound and outbound. The left 
region of the display shows the active IP address ranges. 
The middle region indicates that the Georgia Tech address 
range (located slightly above the middle of the left base 
line) touches nearly all ports. Some other IP ranges touch 
predominantly the lower port numbers. The right region 
shows high activity on low port numbers, which we again 
attribute to the choice of ephemeral ports by Microsoft 
Windows. Some sloped lines indicate port sweeps. Some 
of these are port scans, but many are attempts of bot 
machines to connect to a server. The connection fails, and 
the bot retries. The operating system then picks a new 
ephemeral port number, which it generates by simply 
incrementing the previous one. As a result, the 
visualization displays a sloped line on the right region of 
the display. Note that increased activity on ports above 
60000 is also visible.  At this point we do not have a 
verifiable explanation for this activity. 

Figure 13 shows a close up of a port sweep. The right 
side of the visualization indicates the sweep by a sloped 

line while the middle part visualized the sweep as a solid 
gradient triangle. 

E. Scalability and System Performance 

As more packets have to be visualized, the visualization 
gets slower. We investigate this by showing the number 
of rendered frames per second versus the number of 
visualized packets in Figure 14. Data has been gathered 
on a commodity 2.5 GHz Pentium 4 system with an 
Nvidia Quadro 2 EX based graphics card. The graph 
shows that the frame rate and the number of packets 
follow a power law relationship (linear dependency in the 
bi-logarithmic plot). We found that system interactivity is 
still acceptable at a frame rate of 10 frames per second, 
which corresponds to tens of thousands of packets. It is 
important to note that this limitation only constrains the 
number of packets that can be displayed at any given 
time.  The datasets themselves may be far larger, up to a 
maximum of about 1 GByte on our prototype system.  We 
also identified multiple possibilities to optimize the 
current code to further speed up the visualization. 

V. FUTURE WORK 

There are many areas to explore for future work. We plan 
to include semantic zoom capabilities. The operator will 
be able to retrieve very specific information the closer he 
or she zooms towards the visual representation of a 
packet. Moreover, a graphical user interface will be 
implemented to easily configure the mappings of multiple 
data sources to their visual representation. We plan to also 
correlate packets based on flow information to enable 
users to browse entire flows and analyze the content they 
carry as a contiguous logical unit. To remove clutter for 
visualization of data from high bandwidth links or large 
forensic files, we plan to develop efficient filter 
mechanisms. To integrate the system tighter into security 
analysis, we plan to superimpose data from other sources 
like IDS alerts onto the packet-level data shown. 

VI. CONCLUSIONS 

We presented a visualization tool that is capable of both 
real-time and forensic analysis of packet-level data that 
provides a more efficient way to browse and analyze data. 
The analyst can chose between different time scales and 
zoom into interesting areas of the data. In forensic mode, 
the system is capable of replaying large capture files 
containing days of traffic both forwards and backwards at 
multiple speeds. At any given time, the system provided 
the user a 20,000 - 100,000 packet sliding window on the 
dataset without compromising performance. Moreover, 
detailed packet information can be queried by clicking 
close to a glyph in the visualization. 

The system has proven to be a useful tool for multiple 
purposes. We effectively used it in a wide variety of 

 

 
Figure 14: Frames per Second versus Number of 

Packets 
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instances to get a rapid overview of datasets. This was a 
crucial aspect when analyzing our three-year honeynet 
capture archive of approximately 100 GBytes. Especially 
for these forensic analysis tasks, we found a vast decrease 
in the time to find points of interest in the capture files. 

The system can give a much faster impression about 
traffic patterns and events than an analysis with Ethereal 
or similar programs. Once areas of interest have been 
identified in the data using our visualization tool, Ethereal 
can then be used to do a deep-protocol analysis. We 
believe that incorporating similar protocol analysis 
directly into our tool is both technically feasible and a 
logical direction for the future. 
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