
 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

Real-Time and Forensic Network Data Analysis
Using Animated and Coordinated Visualization

Sven Krasser†, Member, IEEE; Gregory Conti‡, Member, IEEE; Julian Grizzard†, Member, IEEE;
Jeff Gribschaw†, Member, IEEE; Henry Owen†, Senior Member, IEEE

Abstract—Rapidly detecting and classifying malicious
activity contained within network traffic is a challenging
problem exacerbated by large datasets and functionally limited
manual analysis tools. Even on a small network, manual
analysis of network traffic is inefficient and extremely time
consuming. Current machine processing techniques, while
fast, suffer from an unacceptable percentage of false positives
and false negatives. To complement both manual and
automated analysis of network traffic, we applied information
visualization techniques to appropriately and effectively bring
the human into the analytic loop. This paper describes the
implementation and lessons learned from the creation of a
novel network traffic visualization system capable of both real-
time and forensic data analysis. Combining the strength of
link analysis using parallel coordinate plots with the time-
sequence animation of scatter plots, we examine a 2D and 3D
coordinated display that provides insight into both legitimate
and malicious network activity. Our results indicate that
analysts can rapidly examine network traffic and detect
anomalies far more quickly than with manual tools.

Index terms—security visualization, network visualization,

real-time visualization, forensic visualization, honeynet
visualization, honeypot visualization

I. INTRODUCTION

The Internet has become one of the nation’s critical
infrastructures. The large amounts of data transmitted
over typical networked systems render it difficult to spot
activities by malicious adversaries. This poses a challenge
equivalent to “finding the needle in the haystack.” Even
using high signal to noise ratio (malicious traffic/
legitimate traffic) techniques, such as honeynets or
security exercises on isolated networks, analysts are still
confronted with large datasets requiring analysis. Packet
capture logs from small scale 2-3 day security exercises
are on the order of hundreds of megabytes. Even
university-level honeynets, which are computer networks
with no production value that are set up specifically to
watch for network attacks and, by definition, are subject
to only malicious activity and no legitimate traffic, collect
1-10 megabytes of traffic per day. At one extreme,

analysis is conducted using user-customized scripts in
parsing languages like Perl to parse the data and produce
useful information. At the other extreme, machine
processing is used to sift through, consolidate and
evaluate data. These machine processing methodologies
are highly automated and thus not very adept at
recognizing new and unexpected characteristics. In
particular, they may abstract away important information
without the knowledge of the human operator. A more
powerful, and as yet predominately untapped, means of
analysis is to use visualization to allow human undirected
(getting a general overview about occurrences on the
network) as well as directed (displaying and analyzing
information regarding a specific incident) processing of
the data.

Most security tools generate data so prolifically that
they waste the precious resources of human time and
attention. As a result, users are unable to efficiently and
effectively analyze traffic patterns, easily monitor their
networks, rapidly identify attacks, and respond quickly.
We believe that carefully crafted tools and application
specific visualizations can complement previous
approaches by presenting the human with the right
amount of information in the right form of presentation at
the right time. Our constant battle with information
overload during daily analysis activities, in particular with
the Georgia Tech Honeynet, motivated us to investigate
more human-centric, scalable techniques for the analysis
of security data sets. Our primary design goal was to
meet this need by designing a visualization system that,
when appropriately combined with existing technologies,
makes the most effective use of human resources.

The primary contribution of this work is the novel use
of tightly-coupled, animated, time-sequence scatter plots
and parallel coordinate plots in both 2D and 3D to rapidly
analyze network traffic. In addition, we explore the
effective use of labeling, animation, scaling, and fading as
well as interaction techniques to cope with extremely
large ranges of categorical and discrete numeric data. We
validate the efficacy of these results by performing
analysis of real-time and forensic network traffic from
several domains:

• A very active, large-scale university network with
two /16 networks and one /17 network.

†School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0250
‡College of Computing, Georgia Institute of Technology,
Atlanta, Georgia 30332-0280

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

• Live capture from a university honeynet as well as
three years of continuously archived honeynet
packet captures.

• Over 80GB of novel capture data from five large-
scale botnets collected using a darknet.

 Our results indicate that the system provides the
capability to rapidly scan large datasets of network traffic
for malicious activity despite the visual noise of
legitimate, or less important traffic as well as facilitates
“at a glance” insight directly supporting network
monitoring, intrusion detection and attacker behavior
determination.

 Section 2 places our work in the field of current
research. Section 3 describes our system design and
implementation. Section 4 presents our results and
evaluation. In sections 5 and 6 we propose areas for
future work and present our conclusions. Note that, due
to the intensely graphical nature of our work, we suggest
that, if possible, you refer to the electronic edition of this
document to view the full color images.

II. RELATED WORK

Information visualization is a mature field with a wide
range of techniques that have been successfully applied to
many domains. See the work by Tufte [1,2,3] and Spence
[4] for excellent surveys of the field. But only recently
has work been done in earnest to apply these techniques
to network security and other related information
assurance problems. Examples include Girardin [5] who
used self-organizing maps to detect malicious network
activity and Nyarko [6] who used haptic feedback to find
suspicious activity in network traffic. Another interesting
example is the Spinning Cube of Potential Doom [7],
which visualizes real-time port and IP data in a three-
dimensional cube as a rotating scatter plot. While quite
useful to see coarse trends in large-scale networks, it lacks
animation, multiple visualizations and interactive
capability. The visualization system we outline in this
paper combines animated scatter plots with parallel
coordinate plots. The notion of parallel coordinate plots
was first proposed by Inselberg [8]. Several researchers
have applied the technique in the network security
domain, including Marchette [9], Conti [10], and the
National Center for Advanced Secure Systems with their
VisFlowConnect tool [11,12]. We extend their work by
combining parallel coordinate views and animated scatter
plots into a single cohesive visualization. In addition, we
add three-dimensional functionality that allows the user to
zoom and pan the combined visualization. We also
explore system performance characteristics not seen in
other work as well as the use of fading. Fading is used in
Etherape, but the tool provides only a single visualization
of network traffic arranged in a circular graph [13].
Similarly, Erbacher [14] used a circular visualization
composed of animated glyphs to demonstrate that intruder

behavior is surprisingly observable. Both of these
approaches, while effective for moderate numbers of
network nodes, can quickly become crowded. Our
combined visualization approach supports a far greater
number of nodes. We estimate this gain to be about an
order of magnitude more nodes. When combined with
our zooming capability, this gain can reach several orders
of magnitude, but at the cost of additional human
interaction. Our system also extends the work of Conti
[10] by adding the ability to capture and display network
traffic in real time as well as display historical packet
capture files. During the design of our system, we relied
upon the work by Komlodi [15] and Fink [16] to ensure
we incorporated real-world operator requirements. We
also examined best of breed open source security
visualization tools. Snort [17] and tcpdump [18] provide
industry standard network monitoring capability, but only
as textual output. Ethereal also offers excellent textual
output and protocol parsing, but only provides very basic
visualization capability [19]. There are also a few high
quality, commercial analysis tools available, which also
fall into the area of network security visualization,
Lancope’s Stealthwatch plus Therminator system [20] is a
representative example, but they proved difficult to
evaluate due to the prohibitively high cost. In our
research we analyzed several interesting datasets
including botnet and honeynet traffic. To the best of our
knowledge, there has been no work done on visualizing
botnets. There has been some initial work on honeynet
visualization. Honeynet monitoring is typically
conducted with ethereal, snort and tcpdump, but there are
two tools, primarily text-based, that provide some
visualization capability. The Honeynet Security Console
is a useful tool to store and analyze large amounts of data
[21]. Sebek can correlate low-level host-based data (e.g.
launched programs, keystrokes, accessed files) with
network data to evaluate honeynet intrusions [22]. The
result can be visualized as a dependency graph. Another
useful, but again, primarily text based tool is OSSIM. Its
primary strength lies is the correlation of multiple data
streams, a feature that we do not currently provide [23].

III. SYSTEM DESIGN AND IMPLEMENTATION

A. Design Overview

The motivation for this research stems from the need to
ease the time-consuming daily monitoring of our
honeynet, but at the same time, provide a tool that is
useful for both general network and security analysis. Our
goal is to design a visualization system that makes it
possible for the analyst to see at a glance what kind of
activity has occurred on a network while maintaining the
ability to also provide detailed information on the activity.

The system supports two possible ways to input data. It
can either display live packet capture information (real-

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

time mode for monitoring), or it can be used to play back
previously captured data (playback mode for forensics).

B. Visualization Design

Figure 1 shows an overview of the visualization. The
bold left line (called the left base line) denotes the source
IP address (0.0.0.0 - 255.255.255.255) of observed
packets. We chose to implement this value as a 32-bit
integer number where 0 is at the bottom and 0xffffffff is
at the top. The bold right line (called the right base line)
denotes the destination port number (0 - 65,535) where
port 0 is at the bottom and port 0xffff at the top. Note that
a port value of 0 is illegal according to the TCP and UDP
specifications, but may nonetheless occur in network
traffic. For each packet, a colored line links these two
horizontal axes, blue for UDP and green for TCP. The
line color fades to black over time so that old packets
become less visible. Each packet also triggers two glyphs,
represented by vertical lines in the 3D view, moving away
from the left base line and the right base line over time.
Each glyph represents a packet. The height of the glyph
represents the packet size while the distance from the base
line denotes the age of the packet. When a new packet is

observed, both glyphs are on the left and right horizontal
line, respectively. The glyphs move away from the base
lines as the packet gets older. Figure 2 shows an example
screenshot of the system. Additionally, we implemented a
two-dimensional view in which packet length is not
visualized. See the top application window in Figure 3.

C. Interaction Paradigm

The user can navigate with the mouse through the
visualization. The mouse can be used to zoom in to a
point of interest and to pan the view. In the two-
dimensional view, zooming and panning only affects the
y-axis so that the x-axis is still fully visible and the entire
time window of observed packets can be seen by the user.
In the three-dimensional view, both axes are magnified
since the distortion would otherwise complicate the user’s
perception and navigation through the three-dimensional
environment. When clicking into the window, some brief
information regarding the packet closest to the mouse
pointer is displayed. Both glyphs of the packet are marked
with a red diamond. At the same time, protocol, source
and destination IP addresses, source and destination ports,
and a hex/ASCII dump of the IP payload are displayed in
a separate window (Figure 3). Moreover, the IP address
and port number corresponding to the current mouse
pointer position are displayed next to the base lines for
orientation.

In addition to the mouse, the keyboard can be used to
change certain aspects of the visualization. A guiding grid
can be turned on and off, which is particularly useful in
the three-dimensional view mode. The time for a line to

Figure 1: Visualization Overview

Figure 2: Example Visualization

Figure 3: Detailed Packet Information

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

fade and for a glyph to leave the screen area can be
increased and decreased. In playback mode, the speed of
the playback can be adjusted. Negative speeds allow the
user to explore the dataset backwards in time.

The visualization system outlined in this paper highly
profits from user interaction and animation. In addition to
the screenshots provided, we plan to release a version of
our program for further experimentation to the general
public as a part of Georgia Tech’s NETI@home project
[24].

D. System Implementation

The system is implemented using three threads, a
graphical user interface thread, a capture thread, and a
visualization thread. Currently, the graphical user
interface code only runs code to display the textual packet
detail view.

The capture thread is responsible for packet capture and
playback of stored packet data as well as to decode packet
headers. The freely available libpcap library is used to
capture packets. After decoding the packet headers,
relevant information (a packet digest) is extracted and
stored in a linked list. Currently, this digest includes IP
source and destination addresses, transport layer protocol
(TCP and UDP are supported in our current version),
source and destination port, and packet length.
Additionally, the first 70 bytes of the IP payload of each
packet are also stored in memory so that the analyst can
retrieve detailed information from each packet.

The visualization thread traverses this list, calculates the
age of each packet, prunes stale packet data (real-time
mode), and displays the packet information on screen.

In contrast to our tools presented in [10], the new
system described here uses a retained rendering model,
i.e. a digest of the packet data to be visualized is kept in
memory. This design decision makes the new system
computationally more expensive and less scalable on high
bandwidth links, but enables features like zooming or
fading packets over time.

IV. RESULTS AND EVALUATION

A. Backbone Traffic

In this section, we provide an overview of traffic
captured on a Georgia Tech campus backbone link. In
Figure 4 and Figure 5, the captured data is filtered so that
only inbound data from the Internet to the Georgia Tech
network is visualized. Figure 4 shows a 5 second window
of captured data. The clutter on the bottom right is due to
the vast amount of Microsoft Windows machines, which
typically allocate ephemeral ports below 5000 for sockets
they initiate. In the left and right area of the visualization,
there are stripes of lower activity. We presume that these
gaps are packets dropped during the capturing process due
to the busy high speed link.

Figure 4: Inbound Campus Backbone Traffic

(5 sec)

Figure 5: Inbound Campus Backbone Traffic

(10 msec)

Figure 6: Outbound Campus Backbone Traffic

(5 sec)

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

To reduce the clutter in the middle part of the
visualization, we changed the time window visualized to
10 msec in Figure 5. It now becomes obvious that most
outside machines touch low port numbers and only a few
outside machines communicate to higher port numbers on
the Georgia Tech campus.

Figure 6 shows outbound traffic. The left side clearly
shows traffic coming from Georgia Tech’s three blocks of
network addresses. The right side shows a large number
of ports touched. Again, low port numbers below 5000
receive high amounts of traffic. This is due to connections
initiated by off-campus machines picking ephemeral port
numbers in this range. One application that results in such
a pattern is peer-to-peer networking with Microsoft
Windows machines. Off-campus machines connect to on-
campus peers and, by default, their operating system picks
low ephemeral port numbers. The result is a high volume
of outbound traffic on these ports, which normally
indicate client applications. Currently, as indicated by
other campus network monitoring appliances, Georgia
Tech’s campus network carries as much peer-to-peer as
Web traffic.

B. Honeynet Traffic

A honeynet is a network of honeypots, machines that are
intended to be compromised, to provide the system
administrator with intelligence about vulnerabilities and
compromises within the network. A honeynet is placed
behind a reverse firewall that captures all inbound and
outbound data. The reverse firewall limits the amount of
malicious traffic that can leave the honeynet. This data is
surreptitiously contained, captured, and controlled. Any
type of network device can be placed within the honeynet,
to include configurations identical to production machines
elsewhere on the network. These standard production
systems are used on the honeynet in order to give an
attacker the enticing look and feel of a real system. Since
honeypots do not offer any legitimate services to Internet
users and the Internet addresses of the honeypots are not
publicly known, most traffic on the honeynet is
suspicious.

To evaluate the effectiveness of our system, we tested it
with a variety of archival honeynet capture files. As an
example, on January 25, 2003 the Slammer worm hit the
Internet and our campus network. Slammer targeted
Microsoft SQL Servers and machines running the
Microsoft SQL Server Desktop Engine. The worm sent
out its exploit code in 404-byte UDP packets to port 1434.
Figure 7 shows 640 seconds of honeynet traffic. Clearly
visible are many identically sized UDP packets (blue)
targeting a single port.

On February 22, 2004, a computer on campus
compromised one of the honeypots. Honeynet traffic
jumped from 1.5 MB on February 21 to 4.5 MB on

February 22 and back down to 0.5 MB on February 23. It
took several days of studying the logs to identify exactly
when the compromise occurred. Figure 8 demonstrates
that using the visualization system, the compromise traffic
is easily observed; the timestamp in the display directs the
analyst to the exact point in the capture log to begin
detailed analysis. The left IP plane shows that all traffic
occurs inside the Georgia Tech address range. This
significantly reduces the time required to conduct forensic
analysis. A network administrator using this tool could
also identify this type of abnormal traffic in real time
using our visualization system.

C. Botnet Traffic

Compromised machines on the Internet are often
connected to so-called botnets by their attackers. The
attacker maintains a large number of machines under his
or her control and can leverage the connectivity of these
machines to initiate distributed denial of service attacks or
send out unsolicited bulk email (spam).

Figure 7: Honeynet Traffic during the Slammer

Worm Attack

Figure 8: Honeynet Compromise Traffic

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

Researchers at Georgia Tech were able to gain control
over several dynamic DNS entries used by botnets to
contact a master server. These DNS entries have been
redirected to sink machines on the Georgia Tech network.
Compromised machines trying to contact their master
server are directed to this local sink, and their connection
attempt is logged.

Figure 9 shows the inbound traffic to one sink machine.
Machines from distinctly visible netblocks on the Internet
try to connect to a single port on the sink machine. This
results in an image similar to the Slammer worm
visualization. Similar to the honeynet, the sink machines
have no configured services for public use, so
communications from machines all over the Internet to a
single port should raise suspicion by the analyst.

Figure 10 shows the outbound traffic from the same
sink machine. A single machine, the sink, on the left side
replies to numerous destination ports depicted on the right
side of the visualization. Again, many machines in contact
with the sink chose low ephemeral ports, which we
attribute to Microsoft Windows systems being in contact

with the sink. Note that this assumption is a rough
heuristic only. Although we observed this phenomenon
during our earlier work [10], clearly other, less popular,
operating systems besides Microsoft Windows also
choose such low ephemeral ports. Moreover, network

Figure 9: Inbound Botnet Traffic

Figure 10: Outbound Botnet Traffic

Figure 11: Constant Bitrate UDP Traffic

Figure 12: Combined Botnet/Honeynet Traffic

Figure 13: Port Sweep

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

address translation appliances, which are found in many
home networks, may change the ephemeral port number
chosen by the originating operating system.

D. Distinctive Visual Patterns

Our analysis has shown that, even in this straightforward
visualization, distinctive patterns can easily be detected
by the human observer. First, we show how flows sending
at different rates can be distinguished. The visualization
in Figure 11 is based on four constant bit rate UDP
senders and one additional TCP sender. From bottom to
top, the UDP senders send at 10,000 bps, 20,000 bps,
50,000 bps, and 100,000 bps. The TCP sender is a text-
based application running over SSH. The differences in
bandwidth consumption are easily visible to the human
eye. The flow of packets results in a fence-like pattern
loosely corresponding to the bandwidth a flow consumes.

Figure 12 shows 1280 seconds of combined botnet and
honeynet traffic, both inbound and outbound. The left
region of the display shows the active IP address ranges.
The middle region indicates that the Georgia Tech address
range (located slightly above the middle of the left base
line) touches nearly all ports. Some other IP ranges touch
predominantly the lower port numbers. The right region
shows high activity on low port numbers, which we again
attribute to the choice of ephemeral ports by Microsoft
Windows. Some sloped lines indicate port sweeps. Some
of these are port scans, but many are attempts of bot
machines to connect to a server. The connection fails, and
the bot retries. The operating system then picks a new
ephemeral port number, which it generates by simply
incrementing the previous one. As a result, the
visualization displays a sloped line on the right region of
the display. Note that increased activity on ports above
60000 is also visible. At this point we do not have a
verifiable explanation for this activity.

Figure 13 shows a close up of a port sweep. The right
side of the visualization indicates the sweep by a sloped

line while the middle part visualized the sweep as a solid
gradient triangle.

E. Scalability and System Performance

As more packets have to be visualized, the visualization
gets slower. We investigate this by showing the number
of rendered frames per second versus the number of
visualized packets in Figure 14. Data has been gathered
on a commodity 2.5 GHz Pentium 4 system with an
Nvidia Quadro 2 EX based graphics card. The graph
shows that the frame rate and the number of packets
follow a power law relationship (linear dependency in the
bi-logarithmic plot). We found that system interactivity is
still acceptable at a frame rate of 10 frames per second,
which corresponds to tens of thousands of packets. It is
important to note that this limitation only constrains the
number of packets that can be displayed at any given
time. The datasets themselves may be far larger, up to a
maximum of about 1 GByte on our prototype system. We
also identified multiple possibilities to optimize the
current code to further speed up the visualization.

V. FUTURE WORK

There are many areas to explore for future work. We plan
to include semantic zoom capabilities. The operator will
be able to retrieve very specific information the closer he
or she zooms towards the visual representation of a
packet. Moreover, a graphical user interface will be
implemented to easily configure the mappings of multiple
data sources to their visual representation. We plan to also
correlate packets based on flow information to enable
users to browse entire flows and analyze the content they
carry as a contiguous logical unit. To remove clutter for
visualization of data from high bandwidth links or large
forensic files, we plan to develop efficient filter
mechanisms. To integrate the system tighter into security
analysis, we plan to superimpose data from other sources
like IDS alerts onto the packet-level data shown.

VI. CONCLUSIONS

We presented a visualization tool that is capable of both
real-time and forensic analysis of packet-level data that
provides a more efficient way to browse and analyze data.
The analyst can chose between different time scales and
zoom into interesting areas of the data. In forensic mode,
the system is capable of replaying large capture files
containing days of traffic both forwards and backwards at
multiple speeds. At any given time, the system provided
the user a 20,000 - 100,000 packet sliding window on the
dataset without compromising performance. Moreover,
detailed packet information can be queried by clicking
close to a glyph in the visualization.

The system has proven to be a useful tool for multiple
purposes. We effectively used it in a wide variety of

Figure 14: Frames per Second versus Number of

Packets

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

This is a draft version. The final version of this paper will appear in the Proceedings of the
6th IEEE Information Assurance Workshop.

instances to get a rapid overview of datasets. This was a
crucial aspect when analyzing our three-year honeynet
capture archive of approximately 100 GBytes. Especially
for these forensic analysis tasks, we found a vast decrease
in the time to find points of interest in the capture files.

The system can give a much faster impression about
traffic patterns and events than an analysis with Ethereal
or similar programs. Once areas of interest have been
identified in the data using our visualization tool, Ethereal
can then be used to do a deep-protocol analysis. We
believe that incorporating similar protocol analysis
directly into our tool is both technically feasible and a
logical direction for the future.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Charles Robert Simpson,
Jr. for contributing packet capture and decode code from
the NETI@home project and David Dagon for providing
the botnet data. We would also like to thank Lieutenant
Colonel Ron Dodge and the United States Military
Academy’s Information Technology and Operations
Center (www.itoc.usma.edu) for their continual support.
This work was supported in part by the National Science
Foundation Information Technology Research Award
0121643.

VIII. REFERENCES

[1] Tufte, E. The Visual Display of Quantitative
Information. Second Edition. Graphics Press, May
2001.

[2] Tufte, E. Visual Explanations: Images and
Quantities, Evidence and Narrative. Graphics Press,
February 1997.

[3] Tufte, E. Envisioning Information. Graphics Press,
May 1990.

[4] Spence, R. Information Visualization. Pearson
Addison Wesley, December 2000.

[5] Girardin, L. An Eye on Network Intruder-
Administrator Shootouts. USENIX 1st Workshop on
Intrusion Detection and Network Monitoring, 1999.

[6] Nyarko, K; Capers, T; Scott, C and Ladeji-Osias, K.
Network Intrusion Visualization with NIVA, an
Intrusion Detection Visual Analyzer with Haptic
Integration. 10th Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems. March
24 - 25, 2002. Orlando, Florida, p. 277.

[7] The Spinning Cube of Potential Doom.
http://www.nersc.gov/nusers/security/TheSpinningCube
.php, last accessed March 2005.

[8] Inselberg, A. Multidimensional Detective. IEEE
Symposium on Information Visualization, 1997.

[9] Marchette, D. Computer Intrusion Detection and
Network Monitoring: A Statistical Viewpoint, Springer,
2001.

[10] Conti, G. and Abdullah, K. Passive Visual

Fingerprinting of Network Attack Tools. ACM
Workshop on Visualization and Data Mining for
Computer Security (VizSEC), pp. 45-54, Washington,
D.C., October 2004.

[11] X. Yin, W. Yurcik, M. Treaster, Y. Li, and K.
Lakkaraju, VisFlowConnect: NetFlow Visualizations of
Link Relationships for Security Situational Awareness.
ACM Workshop on Visualization and Data Mining for
Computer Security (VizSEC), pp. 26-34, Washington,
D.C., October 2004.

[12] Security Incident Fusion Tool, National Center for
Advanced Secure Systems Research Group.
http://www.ncassr.org/projects/sift/papers/, last
accessed April 2004.

[13] EtherApe: A Graphical Network Monitor. http://
etherape.sourceforge.net/, last accessed December
2004.

[14] Erbacher, R and Frincke, D. Visual Behavior
Characterization for Intrusion and Misuse Detection.
Proceedings of the SPIE '2001 Conference on Visual
Data Exploration and Analysis VIII, CA, January 2001,
pp. 210-218.

[15] Komlodi, A; Goodall, J; Lutters, W. (2004) An
Information Visualization Framework for Intrusion
Detection. Proceedings of the ACM Conference on
Human Factors in Computing Systems (ACM CHI),
ACM Press, 2004.

[16] Fink, G.; Ball, R; Jawalkar, N.; North, C. and Correa,
R. Network Eye: End-to-End Computer Security
Visualization. Submitted for consideration at ACM
CCS Workshop on Visualization and Data Mining for
Computer Security (VizSec/DMSec) 2004.

[17] Snort: The Open Source Intrusion Detection System,
http://www.snort.org/, last accessed December 2004.

[18] TCPDump Public Repository, http://www.
tcpdump.org/, last accessed December 2004.

[19] Ethereal: A Network Protocol Analyzer, http://www.
ethereal.com/, last accessed December 2004.

[20] StealthWatch + Therminator. Lancope Corporation.
http://www.stealthwatch.com/, last accessed April
2004.

[21] Activeworx.org, Honeynet Security Console,
http://www.activeworx.org/programs/hsc/index.htm.

[22] Balas, E., Honeynet Data Analysis: A technique for
correlating sebek and network data,
http://www.dfrws.org/bios/day2/Balas_Honeynets_for_
DF.pdf, last accessed November 2004.

[23] Open Source Security Information Management,
http://www.ossim.net/, last accessed February 2005.

[24] NETI@home, http://neti.gatech.edu/, last accessed
February 2005.

