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Abstract. A user who wants to use a service forbidden by their site’s
usage policy can masquerade their packets in order to evade detection.
One masquerade technique sends prohibited traffic on TCP ports com-
monly used by permitted services, such as port 80. Users who hide their
traffic in this way pose a special challenge, since filtering by port number
risks interfering with legitimate services using the same port. We propose
a set of tests for identifying masqueraded peer-to-peer file-sharing based
on traffic summaries (flows). Our approach is based on the hypothesis
that these applications have observable behavior that can be differen-
tiated without relying on deep packet examination. We develop tests
for these behaviors that, when combined, provide an accurate method
for identifying these masqueraded services without relying on payload
or port number. We test this approach by demonstrating that our in-
tegrated detection mechanism can identify BitTorrent with a 72% true
positive rate and virtually no observed false positives in control services
(FTP-Data, HTTP, SMTP).

1 Introduction

Peer-to-peer file-sharing services are often constrained by organizations due to
their widespread use for disseminating copyrighted content illegally, their sig-
nificant bandwidth consumption for (typically) non-work-related uses, and/or
the risk that they may introduce new security vulnerabilities to the organiza-
tion. Karagiannis et al. [5] have shown that instead of obeying site bans on
file-sharing, however, users hide their file-sharing activity. Moreover, file-sharing
tools themselves are being updated to circumvent attempts to filter these ser-
vices; e.g., BitTorrent developers now incorporate encryption into their products
in order to evade traffic shaping.3

While encryption makes filtering based on traffic content difficult, filtering
packets by port number (as would typically be implemented in router ACLs,
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3 “Encrypting BitTorrent to Take Out Traffic Shapers”, TorrentFreak Weblog, http:
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for example) remains an obstacle to peer-to-peer file-sharing. As such, common
hiding methods also involve changing the port number used by the service to
something that is not filtered. In networks that implement a “deny-than-allow”
policy, the service traffic may be sent on a common service port, in particular
80/TCP (HTTP).

In such cases, ports do not reliably convey the services using them, while
deep packet examination is viable only as long as packet payload is unencrypted.
Analysts therefore need alternative methods to characterize and filter traffic. In
this paper, we propose an alternative service detection and identification method
that characterizes services behaviorally. We hypothesize that TCP services have
quantifiable behaviors that can be used to identify them without relying on
payload or port numbers. For example, we expect that the majority of HTTP
sessions begin with a small initial request followed by a larger response, and then
terminate. If a presumed HTTP client and HTTP server were communicating
using symmetric short bursts of traffic in a single long-lived session, then we
would have reason to consider an alternative hypothesis, such as a chat service.

Within this paper, we focus on a specific problem that motivated this line of
research: demonstrating that a user who claims to be using a common service on
its standard port (such as HTTP) is using another service, specifically BitTor-
rent. To do so, we implement tests that characterize traffic and show how they
can be used together to effectively differentiate BitTorrent traffic from common
services. The goal of our research is a collection of tests which can be used by
analysts or automated systems to classify traffic. Given the increasing sophisti-
cation of evasion strategies, we seek to find behaviors that can be effective with
as few assumptions as possible. For example, these tests do not use deep packet
examination, and are therefore applicable to encrypted and unencrypted traffic.

We calibrate and validate our approach using logs of traffic crossing a large
network. From these logs, we select traffic records describing BitTorrent and
major services, specifically HTTP, FTP data channel and SMTP. The log data
consists of NetFlow, a traffic summarization standard developed by CISCO sys-
tems4. Flow data is a compact representation of an approximate TCP session,
but does not contain payload. In addition, we do not trust port numbers, mak-
ing our tests port- and payload-agnostic. Despite this, we show that by clas-
sifying flows based on several behaviors we can effectively differentiate source-
destination pairs engaged in BitTorrent communication from those involved in
HTTP, FTP or SMTP exchanges. Specifically, our integrated test identifies Bit-
Torrent with a 72% true positive rate and virtually no observed false positives
in control services (FTP-Data, HTTP, SMTP).

The rest of this paper is structured as follows. Section 2 describes previous
work done in service detection. Section 3 describes the behaviors with which we
characterize flows, and that we use to distinguish certain file-sharing traffic from
other types of traffic. Section 4 describes our experiments using these classifi-

4 CISCO Corporation, Netflow Services and Applications, http://www.cisco.com/

warp/public/cc/pd/iosw/ioft/neflct/tech/nappswp.htm



cations both individually and in aggregate, to identify BitTorrent activity. We
conclude in Section 5.

2 Previous Work

Prior work in identifying file-sharing traffic varies primarily in the information
used to do so. Several file-sharing detection tools have analyzed packet payload
(e.g., [9, 20]), a method which will not survive encryption of packet contents
or might simply be infeasible due to performance or other limitations. Other
approaches utilize aggregate packet attributes, such as interstitial arrival times
or the presence of specific packet sequences (e.g., [22, 8, 2, 24, 3, 10–12]). However,
in sufficiently large and busy networks, even this degree of packet analysis can
be problematic.

As a result, flows are increasingly used for various types of security anal-
ysis (e.g., [18, 13]). Flows were originally specified by Partridge [15] for traffic
summarization, and have since been adopted by CISCO for traffic reporting.
NetFlow, the CISCO standard, uses timeouts to approximate TCP sessions, an
approach originally developed by Claffy et al. [1]. Since flow records do not con-
tain payload information, they are generally used for large-scale and statistical
analysis. Notably, Soule et al. [21] developed a classification method to cluster
flows, though they stopped short of mapping them to existing applications (or
types of applications).

Since their development, peer-to-peer file-sharing systems have become tar-
gets of filtering and detection efforts. Karagiannis et al. [5] showed that peer-to-
peer users increasingly evade detection by moving their traffic to alternate port
numbers. Studies conducted on BitTorrent and other peer-to-peer file-sharing
applications have examined the behavior of individual nodes (e.g., [4, 23, 7]) and
application networks (e.g., [19, 17]), but have not compared the behaviors ob-
served to the behavior of more traditional services. Ohzahata et al. [14] developed
a method for detecting hosts participating in the Winny file-sharing application
by inserting monitoring hosts within the file-sharing network itself. Karagiannis
et al. [6] developed a general method for identifying applications called Blinc,
which uses various heuristics and interconnection patterns exhibited by groups
of nodes to identify services. In contrast, we focus on the flow characteristics
between a pair of nodes in isolation to identify the service in which they are
participating, and as such our approach is complementary. Nevertheless, we be-
lieve there is potential in combining our point-to-point analyses with Blinc’s on
interconnection patterns, and hope to investigate this in future work.

3 Application Classification

In this section, we describe the behaviors used to differentiate BitTorrent traffic
from other services. In Section 3.1 we describe a classification tree that we will
use to classify flows into different types, and in Section 3.2 we describe the
intuition and formulation of our tests.



3.1 Simple Taxonomy

Our analyses use flow records; a flow is a sequence of packets with the same
addressing information (source and destination addresses, source and destination
ports, and protocol) which occur within a short time of each other [1]. A flow

record is a summary consisting of addressing, size and timing information about
the flow, but no payload. We will refer to fields of a flow record f with “dot”
notation (e.g., f.duration or f.bytes).

We restrict our data to TCP flows. Flow collection systems such as CISCO
NetFlow record TCP flags by ORing the flags of every packet. As a result,
flag distributions cannot be derived from multi-packet flow records, and certain
behaviors—notably whether an endpoint is the initiator or responder of the TCP
connection of which the flow represents one direction—are not discernible.

We divide flows into three categories: Short Flows, comprising three packets
or less; Messages, which are 4–10 packets but less than 2 kB in size; and File

Transfers, which are any flows longer than a Message. Figure 1 represents our
taxonomy as a decision tree and the categories that this tree covers.

Fig. 1. Flow Classification Tree: The rules used on this tree assign each flow to a class

A Short Flow consists of three or fewer packets; since a complete TCP
session will require at least three packets, Short Flows indicate some error in
communication or anomaly in flow collection. Within Short Flows, we can acquire
more information by examining the TCP flags of the flow; we use the flags to
create three sub categories. A Failed Connection has a SYN flag and no ACKs.
A Keep-Alive has ACK flags only. Since flow recording is timeout-based, Keep-
Alives are recorded by the flow collector during long-lived sessions but currently
do not have any substantial impact on analysis. A Response consists of any
Short Flow whose flags imply a response from the TCP connection responder to
the initiator: a SYN-ACK, a RST-ACK or a RST. We do not consider the other
TCP flags (e.g., PSH) significant in this analysis. As noted above, TCP flags are
OR’ed in flow records, and as a result we only use flags in the Short Flow case,
where the results are least ambiguous.



We define a Message as a flow consisting of 4–10 packets and with a total
size less than 2 kB. We assume that Messages represent the structured exchange
of service data between the source and destination. Example Messages include
HTTP requests and the control messages sent by BitTorrent. We assume that
Messages contain structured communication, as opposed to data intended for
the application’s users. Consequently, we expect that Messages will have fixed
sizes and that certain Messages (with specific sizes) will appear more often than
other ones.

We label any flow longer than 2 kB or 10 packets a File Transfer. We assume
that a File Transfer is the exchange of non-service-specific information between
two sites. We expect that certain services will tend to send shorter files than
others. For example, we expect that HTTP servers will transfer less data than
BitTorrent peers typically, since HTTP clients interact with users and therefore
need a rapid response time.

Table 1 is a log showing BitTorrent flows; in this log, we have labeled each flow
with its corresponding category. Of particular interest is the presence of repeated
Failed Connections (the 144-byte SYN-only packets) and the 276-byte Message
packets. Both of these behaviors will be used to construct tests in Section 3.2.

Source Destination Packets Bytes Flags Start Time Class
Port Port F S A R

3584 6881 1637 1270926 x x 11/04/2005 21:09:33 File Transfer

3586 6881 5 276 x x x 11/04/2005 21:09:36 Message

3619 6881 5 276 x x x 11/04/2005 21:10:18 Message

3651 6881 5 276 x x x 11/04/2005 21:11:01 Message

3701 6881 5 276 x x x 11/04/2005 21:12:04 Message

1290 6881 3 144 x 11/04/2005 21:53:56 Failed Connection

2856 6881 5 636 x x 11/04/2005 22:33:11 Message

3916 6881 5 276 x x x 11/04/2005 23:03:44 Message

4178 6881 5 636 x x 11/04/2005 23:12:01 Message

4884 6881 3 144 x 11/04/2005 23:32:05 Failed Connection

Table 1. Log of traffic and associated classification

3.2 Tests

In this section, we describe four tests for characterizing the flows generated by
various services. Each test is performed on a log of flow records bearing the same
source and destination, and hence are unidirectional. We rely on unidirectional
flows for three reasons. First, CISCO NetFlow is reported unidirectionally; i.e.,
each direction of a connection is reported in a different flow. Second, on a network
with multiple access points, there is no guarantee that entry and exit traffic



passes through the same interface. As a result, determining the flows representing
both directions of a connection on a large network can be prohibitively difficult.
Finally, we wish to acquire results using as little information as possible.

Each test outlined in this section is characterized by function θ(x, F ). This
binary-valued function applies a particular threshold x to a measure calculated
on a flow log F , where F consists of flows all bearing the same source and
destination.

Failed Connections We expect that, except for scanners, clients (respectively,
peers) open connections only to servers (respectively, other peers) of which they
have been informed by another party. For example, BitTorrent peers connect to
peers that they have been informed of by their trackers. We further expect that
when a client (peer) attempts to connect to a server (peer) that is not present,
we will see multiple connection attempts.

We thus expect that Failed Connections occur more frequently in traffic from
services with transient server/peer populations. We expect that BitTorrent peers
regularly disconnect and that other peers will try to communicate with them
after this. In contrast, we expect that the providers of HTTP and SMTP servers
will implement policies to ensure maximum uptime. Therefore, under normal
circumstances, we expect that the rate of Failed Connections for BitTorrent will
be higher than it would be for SMTP or HTTP, for example.

Table 2 summarizes Failed Connections in an hour of observed data from four
services: HTTP, FTP, SMTP and BitTorrent. From the observed flow records, we
count the number of unique source-destination pairs and then count the number
of pairs that have multiple Failed Connections. As the table shows, only SMTP
and BitTorrent have a significant rate of Failed Connections, and BitTorrent has
a somewhat higher rate of Failed Connections than SMTP does.

Service Source-destination Pairs experiencing n Failed Connections
pairs n = 0 n = 1 n = 2 n > 2

HTTP 3089 2956 ( 96%) 78 ( 3%) 22 (1%) 33 ( 1%)

FTP 431 431 (100%) 0 ( 0%) 0 (0%) 0 ( 0%)

SMTP 18829 15352 ( 82%) 1789 (10%) 619 (3%) 1069 ( 6%)

BitTorrent 49 37 ( 76%) 1 ( 2%) 0 (0%) 11 (22%)

Table 2. Failed Connections per service for sample data

To evaluate connection failure as a detection method, we will use the following
threshold test, θc(x, F ):

θc(x, F ) =

{

0 if the percentage of Failed Connections in F is less than x

1 otherwise



Bandwidth In most client-server applications, a single server communicates
with multiple clients; therefore, implementing faster transfers generally requires
purchasing a higher-bandwidth connection for the server. BitTorrent increases
the speed of a transfer by adding more peers to the BitTorrent “swarm”: each
peer transfers a fragment of the desired file, resulting in a high-bandwidth trans-
fer comprised of multiple low-bandwidth connections. We expect that most ded-
icated servers will transfer data at higher speeds than a peer in a BitTorrent
transfer will.

For flow logs of file transfer services (as opposed to a chat service, such as
AIM), we of course expect that many of the corresponding connections are used
for file transfers. The flow in the direction opposite the file transfer will consist
almost exclusively of 40-byte zero-payload packets. Calculating bandwidth by
counting the bytes in these packets will result in an artificially depressed value
for the bandwidth consumed by the connection that gave rise to this flow. To
compensate for this, we assume that the files transferred are considerably larger
than the standard 1500-byte MTU for Ethernet, and consequently fragmented
into MTU-length packets. We then estimate bandwidth for such flows by assum-
ing that all of the ACK packets are in response to 1500-byte packets, resulting
in the following formula:

b(f) =
1500 bytes/packet ∗ f.packets

max(f.duration, 1 second)

For bandwidth tests, our threshold function, θb, will be expressed as follows:

θb(x, F ) =











⊥ if there are no File Transfers in F

0 if there is a File Transfer f ∈ F such that b(f) ≥ x

1 otherwise

Note that θb(x, F ) is undefined if there are no File Transfers in F . A band-
width test cannot be meaningfully applied to a flow log with no File Transfers,
since flow durations are recorded with second precision (while Messages and
Short Flows typically take far less than a second).

Comparing Message Profiles We expect that Messages will have fixed for-
mats specified by the service. For example, the first action taken by a BitTorrent
peer upon connecting to another peer is to send a 68-byte handshake containing
a characteristic hash for its target file.5 We therefore expect that a dispropor-
tionate number of BitTorrent Messages will have 68-byte payloads.

Comparative histograms for BitTorrent and HTTP Message sizes are shown
in Figure 2. As this example shows, BitTorrent traffic spikes at 76 bytes per
Message. This is most likely due to the 68 bytes necessary to send the BitTorrent
handshake, plus a common 8-byte set of TCP options [16].

5 See http://wiki.theory.org/BitTorrentSpecification.
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We test this hypothesis by generating histograms for the Messages from
each major data set and then use the L1 distance as an indicator of similar-
ity. We define a histogram H on the Messages in a flow log F as a set of values
h0(F ) . . . hn(F ), such that hi(F ) is the observed probability that a Message in F

has a payload between [k(i− 1), ki) bytes in size. In particular,
∑n

i=1 hi(F ) = 1.
Given a reference flow log FR and a test flow log FT , the L1 distance is defined
as:

L1(FT , FR) =
n

∑

i=0

|hi(FT ) − hi(FR)|

Histogram calculation is complicated by TCP headers and TCP options.
TCP packets contain 40 bytes of header data above any payload. In addition,
TCP sessions specify TCP payload options in the first packet; these options will
be some multiple of 4 bytes and also affect the payload size. To compensate for
the headers, we calculate the payload size for a flow f as:

p(f) = f.bytes − (40 bytes/packet× f.packets)

We set k, the size of the bins used to calculate probabilities, to 12 bytes.
This bin size is larger than the sizes of the most common TCP option combi-
nations [16] and should therefore reduce profile mismatches caused by different
option combinations.

The threshold test is then:

θp(x, F ) =











⊥ if there are no Messages in F

0 if there exist Messages in F and L1(F, FR) ≥ x

1 otherwise



It is understood that the L1 distance is calculated only using the Messages in
F and FR. Note that θp(x, F ) is undefined if there are no Messages in F : Short
Flows should not have payload data, and we assume that File Transfers contain
unstructured (and so arbitrary-length) data.

Volume Because HTTP files are immediately viewed by a user, we expect that
web pages are relatively small in order to ensure rapid transfer. Therefore, we
expect that if a BitTorrent user transfers a file, the resulting TCP session will
transfer more bytes than a HTTP session would.
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Figure 3 is a log plot of the frequency of flows; each flow is binned by the
common logarithm of its packet count. The results in Figure 3 satisfy our in-
tuition about file sizes: the majority of HTTP flows are relatively low-volume,
with the majority consisting of 20 packets or less. We note that, in contrast to
our original expectations, SMTP induces higher-volume flows than FTP.

For this behavior, the threshold function θt(x, F ), is defined as:

θt(x, F ) =

{

0 if ∀f ∈ F : f.packets ≤ x

1 otherwise

Similar to the bandwidth test, the presence of even a single large-volume flow is
an indicator.

4 Experiments

This section summarizes the tests conducted on the source data and their results.
Section 4.1 describes the source data, and Section 4.2 describes how we calibrate
the individual tests. Section 4.3 describes the integration and validation of these



tests into a combined test for BitTorrent, and evaluates its accuracy. Section 4.4
discusses what countermeasures a user can take to evade the tests.

4.1 Calibration Data

Calibration data is selected from a log of traffic at the border of a large edge
network. Since the flow logs do not contain payload information, we cannot
determine what service any flow describes via signatures. In order to acquire
calibration and validation data, we use a combination of approaches which are
described below.

Each data set consists of FTP, SMTP, HTTP or BitTorrent flow records.
SMTP and HTTP were chosen because they comprise the majority of bytes
crossing the monitored network. The FTP data set is actually FTP-Data traffic
(i.e., port 20). We chose to use FTP-Data because we expected that it would
consist primarily of large File Transfers and thus be difficult to distinguish from
BitTorrent.

In the case of FTP, SMTP and HTTP, server names are used to validate ser-
vices. HTTP server names usually begin with a “www” prefix; similarly, SMTP
server names often begin with “mx” or “mail”. We restrict our flows to those
with destination addresses to which a name containing a relevant string resolves.
We assume that if a destination has an appropriate name and participates in
the flow on the relevant port, then it is providing the suggested service.

In each case, the flows are outgoing flows collected from the observed network,
i.e., flow sources are always inside the network and flow destinations are always
outside. The calibration data are detailed below:

– HTTP: The HTTP data set consists of flow records where the destination
port is port 80 and the source port is in the range 1024–5000, the ephemeral
port range for Windows. In addition, every destination address must be
that of an HTTP service (such as Akamai or Doubleclick) or have a name
including “www” or “web”.

– SMTP: The SMTP data set consists of flow records where the destination
port is 25 and the source port is ephemeral. Destination addresses must have
names containing the string “smtp”, “mail” or “mx”.

– FTP: The FTP data set consists of FTP-Data (port 20) flows; the corre-
sponding FTP-Control (port 21) information is not used in this analysis.
The FTP data set consists of flow records where the destination port is 20
and the source port is in the ephemeral range. Destination addresses must
have names that begin with the string “ftp”.

– BitTorrent: The BitTorrent data set consists of logs from hosts running Bit-
Torrent in the observed network; these hosts were identified using a banner
grabbing system configured to identify BitTorrent prefixes. While this system
can identify hosts running BitTorrent, it does not identify when BitTorrent
communication occurred. Therefore, when examining traffic logs to and from
a suspected host we assume that other applications do not masquerade as
BitTorrent, and so any interaction between two IP addresses (one of which



is suspected) where the source port is ephemeral and the destination port is
6881 is assumed to be BitTorrent.

All source data comes from the first week of November 2005; due to the frequency
with which particular services are used, each data set comprises a different period
of time. In particular, BitTorrent traffic was collected over 2 days, while the other
services were collected over several hours.

Flow Classification Service
HTTP FTP SMTP BitTorrent

All flows 205702 (100%) 120144 (100%) 142643 (100%) 13617 (100%)
src-dst pairs 3088 (100%) 746 (100%) 18829 (100%) 2275 (100%)

Failed Connection flows 2427 ( 1%) 0 ( 0%) 13010 ( 9%) 9325 ( 68%)
src-dst pairs 132 ( 4%) 0 ( 0%) 3476 ( 18%) 1992 ( 88%)

Keep-Alive flows 5403 ( 3%) 1965 ( 2%) 31306 ( 22%) 1106 ( 8%)
src-dst pairs 409 ( 13%) 504 ( 68%) 2566 ( 14%) 135 ( 6%)

Response flows 18635 ( 9%) 23663 ( 20%) 12545 ( 9%) 199 ( 1%)
src-dst pairs 730 ( 24%) 314 ( 42%) 2959 ( 16%) 53 ( 2%)

Message flows 150937 ( 73%) 64558 ( 54%) 26271 ( 18%) 1615 ( 12%)
src-dst pairs 2880 ( 93%) 558 ( 75%) 4704 ( 25%) 270 ( 12%)

File Transfer flows 28300 ( 14%) 29958 ( 25%) 59511 ( 42%) 1372 ( 10%)
src-dst pairs 1504 ( 49%) 504 ( 68%) 13771 ( 73%) 199 ( 9%)

Table 3. Classification of flow records in calibration data

Table 3 summarizes the flows in the calibration data sets. Consider any in-
dividual “Service” column, e.g., the column “HTTP” that indicates the HTTP
data set. For each flow classification, the row marked “flows” shows the number
of flows of that type that appeared in that data set, and the approximate per-
centage of the total number of flows that these comprised. Ignoring the “All”
classification, the rest of the classifications are mutually exclusive and exhaus-
tive, and so the flows accounted for in these “flows” rows total to the number
of flows in the data set (indicated under the “All” classification). Similarly,
for each flow classification, the number of source-destination pairs for which at
least one flow of that type appeared in the data set is shown in the “src-dst
pairs” row. Since the same source-destination pair can be listed for multiple flow
classifications—if flows of each of those classifications were observed between
that source-destination pair—the sum of the source-destination pair counts for
the various flow types (excluding “All”) generally exceeds the number of source-
destination pairs in the data set. Note that FTP does not show any failed connec-
tions, presumably because FTP-Data connections are opened after FTP-Control
connections have succeeded.



4.2 Calibration

We have hypothesized that BitTorrent can be distinguished from other services
by examining bandwidth, volume, the profile of Messages and the rate of Failed
Connections. To evaluate this hypothesis, we now construct a series of tests,
one for each behavior. In each test, we specify the behavior as a parameterized
function and plot the results on a ROC (Receiver Operating Characteristic)
curve. The ROC curve is generated by using the appropriate θ-test against flow
logs selected from the data sets in Table 4. In each case, a control data set (either
HTTP, SMTP or FTP) is partitioned into flow logs C1 . . . Cℓ, where ℓ is the total
number of distinct source-destination pairs in the set and each Ci is log of all
flows between one source-destination pair. Similarly, the BitTorrent data set is
partitioned into flow logs T1 . . . Tm, each between one source-destination pair.

The contents of Ci and Tj are then evaluated by the corresponding θ-function.
The false and true positive rates are calculated as follows, given a test function
θ(x, F ).

FP(x) =

∑

C∈C
θ(x, C)

|C|
where C = {Ci : θ(x, Ci) 6= ⊥}

TP(x) =

∑

T∈T
θ(x, T )

|T |
where T = {Tj : θ(x, Tj) 6= ⊥}

Figure 4(i) shows how effective Failed Connections are for detecting BitTor-
rent versus control data. As described in Section 3.2, BitTorrent has an usually
high number of Failed Connections: for 85% of the observed source-destination
pairs, at least 75% of their flow logs consist of Failed Connections. SMTP traffic
is the least distinguishable from BitTorrent; we believe that this is because both
BitTorrent and SMTP connections are opened as the application requires, while
HTTP and FTP connections are opened by user request. If an HTTP site is
not available, a user is likely to give up; conversely, an SMTP client will retry
quickly.

While the Failed Connection test is highly distinctive on these data sets,
we note that our test data may be biased by the varying times used to collect
data. While, as Table 1 shows, BitTorrent connections can fail over very short
periods of time, a better statistical model may produce more precise results over
homogeneous time periods.

Figure 4(ii) summarizes the results of our bandwidth tests. The operating
characteristic is the maximum observed bandwidth, estimated between 1 kB/s
and 20 kB/s using 1 kB/s increments. As this curve shows, the bandwidth cutoff
for BitTorrent is approximately 14 kB/s, which allows a 90% correct identifica-
tion for both HTTP and FTP traffic. SMTP traffic is less distinguishable, with
higher than a 35% false positive rate at the same value.

We note that the bandwidth estimates are low; e.g., according to Figure 4(ii),
roughly 30% of source-destination pairs for HTTP and SMTP had bandwidths
less than 14 kB/s. We conjecture that this is primarily a result of limitations
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Fig. 4. ROC curves generated from tests

in using flow records to estimate bandwidth. For example, the available band-
width of a persistent HTTP connection is not fully utilized for the duration of
the connection; instead, content transfers on the connection are separated by
intervening idle periods. Consequently, the flows recorded for such connections
will have a deflated average bandwidth. Such effects could be rectified by using
alternative flow-like metrics; several are proposed by Moore et al. [12], but would
require modifying existing flow formats.

Figure 4(iii) summarizes the success rate for differentiating BitTorrent and
other traffic using a profile of Messages. Each point in this graph is a mean of
the results from 10 runs. In each such run, 20% of the source-destination pairs in
the BitTorrent data set are selected uniformly at random and used to generate
the profile. During the test, the remaining 80% are used to generate profiles
for comparison. As this curve shows, Message profile comparison worked well
for differentiating HTTP and SMTP traffic, but was considerably less accurate
when comparing FTP traffic. We note that due to the random selection used
during these tests, the resulting true positive rates vary for each data set; the
thresholds shown in Figure 4(iii) are approximate across the three data sets.



Figure 4(iv) shows the efficacy of the volume test. In this curve, the operating
characteristic ranges between 15 packets and 110 packets. We note that the true
positive rate for the curve is very high, and that 94% of the source-destination
flow logs observed for BitTorrent had one transfer of at least 110 packets, a
number far higher than anything sent by our example HTTP flow logs.

4.3 Integration and Validation

We now combine the tests in order to identify BitTorrent. To do so, we use
voting. For every source-destination pair in a data set consisting of mixed Bit-
Torrent and control traffic, each test is applied to the corresponding flow log
in order to determine whether the traffic is characteristic of BitTorrent. The
result of the test is recorded as a vote, where an undefined result is a 0-vote.
For each source-destination pair, the total number of votes is then used as the
operating characteristic on a ROC curve. For this curve, a false positive is a flow
log of control traffic that is identified as BitTorrent, and a false negative is a
flow log of BitTorrent traffic identified as control traffic. This voting method is
intended to be a simple integration attempt; in future work we may opt for more
sophisticated methods.

The data sets used to validate these tests are summarized Table 4. These
data sets are taken from different sampling periods than the calibration data
sets and do not overlap them. Otherwise they are assembled using the same
approach as the calibration data.

False positives and false negatives are weighed equally for each test: The
upper left corner of a ROC curve represents perfect classification (i.e., no false
positives and perfect true positives), and so we choose the point from each cal-
ibration curve that minimizes the distance from that corner. For the tests in
Section 4.2, this results in a threshold xopt

c for θc of 1%; for x
opt

b of 14 kB/s; for

xopt
p of 1.7; and for x

opt
t of 110 packets. Table 4 shows the results of each individ-

ual test applied against the validation data sets; we note that unlike calibration,
the θp and θb tests are applied against all flow logs. As Table 4 shows, each
behavior was demonstrated by at least 50% of the BitTorrent source-destination
pairs. In comparison, none of the control services had a test which more than
30% of that service’s flows passed.

Data Set Flows Src-dst Pairs for which θ(xopt, F ) = 1
pairs θc θb θp θt

BitTorrent 9911 70 36 (51%) 51 (73%) 63 (90%) 51 (73%)
HTTP 42391 1205 27 ( 2%) 156 (13%) 5 ( 0%) 64 ( 5%)
SMTP 46146 4832 729 (15%) 1350 (28%) 105 ( 2%) 1451 (30%)
FTP 47332 561 0 ( 0%) 15 ( 3%) 164 (29%) 158 (28%)

Table 4. Validation data sets and individual test results



The integrated vote is plotted as a ROC curve in Figure 5. The integrated test
results in a 72% true positive rate if 3 or more tests agree, and a corresponding
false positive rate of 0% for all control services. None of the control source-
destination pairs received four affirmative votes, and only source-destination
pairs in the SMTP data set received three. HTTP was the most easily distin-
guished of the control services, with less than 1% of observed source-destination
pairs having two affirmative votes.
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Fig. 5. Integrated ROC curve identifying BitTorrent.

4.4 Evasion

As noted in Section 1, users now actively evade detection methods. As a result,
we must consider how the developers of a service can evade the tests discussed
in this paper.

The BitTorrent specification can be changed to evade Message profiling by
changing the sizes of the control Messages. If the Messages were randomly
padded, a size-based profiling method would be less reliable. This approach is
easy to implement.

The volume test can be evaded by limiting the maximum amount of data
received from a single host. However, this approach means that BitTorrent peers
will have to communicate with a larger number of peers, at which point they are
increasingly vulnerable to host-counting strategies such as Blinc’s [6].

Tests based on Failed Connections can be evaded by increasing the time
between connection attempts or by ensuring that a BitTorrent peer only com-
municates with peers that are known to be active, a function that is theoretically
already supported by the tracker. However, either change will increase download
time by increasing the time required to find an active host.

Evading bandwidth detection is more challenging: users must either purchase
additional bandwidth or use all their bandwidth to transfer data.



5 Conclusions

In this paper, we have demonstrated that services have well-defined behaviors
which can be used to identify masqueraded peer-to-peer file-sharing traffic with-
out relying on payload or port numbers. To do so, we have developed a collection
of tests based on service behavior and shown how BitTorrent differs from SMTP,
HTTP and FTP traffic. These results are used to demonstrate that BitTorrent
is characteristically different from these other services, and that these differ-
ences can be detected by looking at gross flow-level attributes, without relying
on deeper packet examination than what is normally required to construct the
flow.
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