
Ourmon and Network Monitoring Performance
Extended Abstract

James R. Binkley
Computer Science Dept.
Portland State University

Portland, OR, USA
jrb@cs.pdx.edu

Bart Massey
Computer Science Dept.
Portland State University

Portland, OR, USA
bart@cs.pdx.edu

Draft of 2004/10/22 22:14

Abstract

Open source intrusion detection systems are increas-
ingly being deployed as protection against network-
initiated attacks. While such systems can be highly ef-
fective against known threats, they are more problem-
atic against unknown attacks. Ourmon is an open-source
network anomaly detector that has been developed over
a period of several years at Portland State University.
Ourmon monitors a target network to highlight abnor-
mal network traffic.

One problem that intrusion detection systems face is
network-intensive attacks that can overwhelm monitor-
ing and analysis resources. Experiences with Ourmon in
a real network environment data and experiments with
an IXIA high-speed packet generator verify this prob-
lem. While anomaly detection systems are less sensitive
to packet loss, this is still an issue for them. Several
modifications to Ourmon have noticeably improved its
performance, and further performance improvement is
expected.

1 Introduction
The Ourmon [13] network monitoring system is an
open-source tool for real-time monitoring and measure-
ment of traffic characteristics of a computer network.
Ourmon uses the Berkeley Packet Filter (BPF) to cap-
ture interesting features of the envelope of incoming IP
packets. Network monitoring and data visualization are
typically performed on separate hosts. The data visu-
alization system uses standard network graphical tools
to display the resulting measurements in a fashion that
highlights anomalies.

The Internet has recently faced an increasing number
of bandwidth-intensive denial of service attacks. For
example, in January 2003, the slammer worm [3, 11]
caused serious disruption, not only wasting bandwidth
and affecting reachability, but also demonstrating some
serious side effects in core routing infrastructure. At
Portland State, four lab servers with 100 Mb NIC cards
were infected simultaneously. These servers then sent
approximately 360 Mb of small packets to random des-
tinations outside of PSU. This attack not only clogged
PSU’s external connection to the Internet, but it also
caused serious network monitoring failures as well. Due
to the semi-random nature of the IP destination ad-
dresses generated by the worm, a router sitting between

border router

Ethernet switch
campus

Internet

probe

DMZ monitors

snort

port 1

port 2 port 3

Figure 1: Ourmon network setup

network engineers and network instrumentation experi-
enced thrashing behavior that overutilized the CPU. En-
gineers were thus cut off from central network instru-
mentation at the start of the attack.

As a result of the slammer attack, and also due to the
timely and fortunate acquisition of an IXIA 1600 packet
generator, experiments were conducted to evaluate the
performance of the network monitoring portion of Our-
mon with a series of realistic Gigabit Ethernet (gig-E)
flows. The results of these experiments were quite in-
teresting. For small packets on a gig-E line, the monitor
failed to capture all of the presented packets even at rel-
atively low input rates.

As a result of these experiments, attempts were made
to understand the efficiency issues involved and to im-
prove Ourmon’s performance. Latencies associated with
the BPF and with data capture were identified, and were
dealt with relatively successfully.

The current Ourmon system appears to have perfor-
mance sufficient to be a useful tool in the network en-
vironment in which it is fielded. However, further work
could be done to improve its performance. Furthermore,
the general problem of high-traffic network monitoring
using open source and commodity hardware needs to be
addressed in a more uniform fashion.

This extended abstract briefly introduces the Ourmon
system (Section 2). It then discusses experiments with
the Ourmon and the IXIA packet generator (Section 3)
and the resulting mitigation activities (Section 4). Fi-
nally, some comments are made about the general prob-
lem of monitoring high-speed flows (Section 5).

Draft: 2004/10/22 22:14 Page: 1



2 Introduction to Ourmon
Ourmon is a real-time web-based network monitor
somewhat similar to SNMP RMON [18] systems or
ntop. Ourmon assumes the port-mirroring functional-
ity of Ethernet-based switches. A typical setup may be
seen in Figure 1. An Ethernet switch is configured to
“mirror” (duplicate) packets sent in/out its Internet con-
nection (port 1). All packets sent via the Internet port are
copied to port 3, which is running the front-end Ourmon
probe on a FreeBSD system with the BPF packet tap.
Thus Ourmon’s probe setup is similar to that of Snort
(shown on port 2 of the switch). Ideally, the probe sys-
tem captures all packets going to and from the Internet.
The back-end Ourmon graphics engine normally runs on
a second computer, which need not be in the center of a
network.

A probe configuration file specifies various named fil-
ters (feature recognizers) for the probe to use. Probe
output is written to a small ASCII file that represents
a summarization of the last 30 seconds of filter activity
in terms of byte or packet counts per named configu-
ration filter. The probe output file acts as an input to
the back-end, which in turn produces various graphics
outputs and ASCII reports for web display. Two kinds
of graphics are produced: RRDTOOL-based [15] strip
charts used to visualize the filter outputs, and histograms
used to display a “top-N” flow analysis.

The Ourmon probe uses the BPF in two ways. First
the BPF acquires the packets using the kernel BPF buffer
system. Second, the user-mode BPF interpreter is used
to filter packet characteristics. The user-mode BPF filter
takes multiple BPF filter expressions and groups them
together in a BPF filter set. The back-end displays each
filter output as a trace in an RRDTOOL strip chart. The
current PSU DMZ probe software is running around 60
BPF expressions in sixteen filter sets.

Ourmon also supports a small set of “hardwired” C
filters in the probe that are turned on via configuration
names in the configuration file. As one example, a hard-
wired filter counts packets according to layer 2 unicast,
multicast, or broadcast destination address types. Es-
pecially germane to the topic of high-volume flows is
the packet capture filter. This filter collects statistics on
dropped and counted packets provided directly from the
BPF kernel code. The packet capture filter is used to de-
termine when the kernel BPF mechanism is overloaded
during testing. Figure 2 shows an example back-end
graph for this filter. Drops are in green and captured
packets are in blue. This picture was taken on the day of
a slammer re-infection. It can be seen that the Ourmon
probe (at the time a Pentium-3) successfully character-
ized traffic during the attack, even though many packets
were dropped.

The third and final filter class is the top-N flow moni-
tor. The probe builds up a hashed sorted list of IP flows
over the sample time. The top N (around 10) TCP, UDP,
and overall IP flows are recorded in the output file. The
back-end takes this information and produces graphical
histograms and text reports. A flow is defined as the
following 5-tuple: (IP source, IP destination, IP next
protocol, L4 source port, L4 destination port). Figure 3
shows the top-N graph for a denial of service attack with
a spoofed IP source address launched over Internet2 at

a local IT administrator’s host machine. Multiple UDP
flows, each around 1.5 Mb are shown.

The relative execution cost of these three classes of fil-
ters in a traffic-intensive environment is of interest. Note
that while there is only one top-N flow filter, a user may
program any number of BPF filter sets. The packet cap-
ture filter is an important indicator in this measurement:
it serves to indicate loss of packets. This is an important
indicator that the combined kernel and probe applica-
tion system is in failure mode. This may be due to any
number of causes: a likely one is that too much work
is being done at the application layer, thus causing the
application to fail to read buffered kernel packets in a
timely manner.

3 Experiments with the IXIA
Like other tools including tcpdump [17], snort[14], or
ntop [4, 12], the Ourmon front-end uses the BPF as a
“packet tap”. This means that the application takes a
stream of unfiltered packets directly from an Ethernet
device, bypassing the host TCP/IP stack. The inter-
face interrupts on packet input, and places the trimmed
packet (trimmed to give all headers through layer 4), in
the kernel BPF filter. The front-end Ourmon probe then
reads packets subjecting each packet in turn to a set of
configuration filters. Hence it makes sense to test both
the BPF performance by itself, and Ourmon probe com-
ponent filters in turn.

Our experimental questions include the following: 1)
Using gig-E with packets of a given size, at what bit rate
can the underlying BPF tap and buffer system not lose

Figure 2: The packet capture filter graph showing counts
and drops during a slammer attack

Figure 3: Top N UDP flow histogram showing a DOS
attack

Draft: 2004/10/22 22:14 Page: 2



packets? 2) For a given packet size, if drops are en-
countered, can the kernel BPF buffer size be increased
to mitigate the drops? 3) Ourmon has three classes of
filters. Is there a reasonable characterization of the over-
all performance of filters of each class? Put another way:
at high network packet rates, which of the Ourmon fil-
ter classes might be useful? 4) The slammer worm’s
semi-random IP destinations caused route-caching per-
formance problems in routers. Does Ourmon’s top-N
flow monitor have similar performance problems given
rolling IP destinations?

3.1 Experimental Setup
We constructed a test system consisting of the IXIA with
two gig-E ports, a line speed gig-E switch capable of
port-mirroring, and a UNIX workstation with a gig-E
NIC card. The switch was setup to mirror packets to
the UNIX host running the front-end probe and the IXIA
was setup to send packets from one port to the other port.

Space constraints preclude describing the hardware
platform and test execution process in detail in this ex-
tended abstract: a thorough description will be given in
the final report. Briefly, an IXIA 1600, a Packet En-
gines gig-E switch, and a 1.7 GHz AMD computer with
a Syskonnect gig-E card were connected in a standard
configuration. All tests were scripted, and data collec-
tion was automated. Software used included Ourmon
2.0 and libpcap [17] version 0.7.2. The host operat-
ing system was FreeBSD 4.7, running only the Ourmon
front-end probe. Correct system operation was validated
experimentally.

Tests were based on either maximum-sized packets
and minimum-sized packets. For testing, five possible
types of Ourmon filter tests were performed: 1) The
packet capture filter, hereafter called the “null” filter, be-
cause it cannot be turned off, and is the only remaining
statistic when all Ourmon filters (hardwired, etc.) are
removed from the configuration; 2) The hardwired C fil-
ters as a group; 3) BPF filters from one or more filter
sets; 4) The top-N filter mechanism; 5) The combination
of all filters.

The null filter detected any kernel BPF filter packet
loss, by displaying the count/drop information taken
from the operating system. For tests 3–5, the filters were
always put in individually in order to determine if the fil-
ter type itself had an impact on the overall performance.
There were 6 hardwired C filters at the time of testing.
BPF filter sets were derived from a set that had 4 simple
filters in it. The individual BPF expressions were con-
figured to capture TCP ports that could not match the
output of the IXIA (UDP packets), as it seemed reason-
able for BPF expressions to always fail to match.

The top-N test required a new flow for each iteration.
A rolling IP destination setup was used, where each sub-
sequent UDP packet within a set of 1000 or 10000 had a
different IP destination. This could be said to be a rough
simulation of the slammer worm with its variation in IP
destinations.

3.2 Test Results
For IXIA-based Ourmon tests, two different sets of flows
were generated: one with maximum-sized packets (Sec-
tion 3.2.1) and one with minimum-sized packets (Sec-

test BPF top-n BPF drop
sets flows minsize rate

null filter 128 kB 0%
hardwired 128 kB 0%
top-n 1000 128 kB 0%
top-n 10000 XXX 80%
BPF 1 128 kB 0%
BPF 4 128 kB 0%
BPF 8 128 kB 20%
BPF 8 7 MB 0%
test config 1 1000 7 MB 0%

Table 1: Maximum Packet Tests

tion 3.2.2). These results will be discussed in turn.

3.2.1 Maximum-Sized Packets
Table 1 summarizes the performance of Ourmon given
flows of maximum-sized packets. Entries shown as
XXX in the table represent system failure. The flow rate
was set to maximum: the drop rate thus shows packets
lost at gig-E speeds. The null filter configuration almost
worked with the default BPF buffer size of 4 KB. Some
packets were lost at a 30 second interval: this may have
something to do with an operating system timer. Increas-
ing the kernel BPF buffer size to 128 KB removed the
loss. Adding in the hardwired filters caused no addi-
tional loss.

The top-N filter worked with no loss at 1000 flows and
completely failed at 10000 flows. Larger BPF buffers
did not help. This is the most significant failure case
with maximum MTU packets. Decreasing the IXIA
flow-rate to 45 Mb completely mitigated these losses.

When the number of BPF filter sets was increased to
8 sets (32 BPF expressions), some loss was encountered.
The kernel BPF buffer size was then increased. An un-
reasonably large BPF buffer of 7 MB completely miti-
gated the problem.

The complete test was lossless, since only 1000 top-N
flows were used.

3.2.2 Minimum-Sized Packets
With minimum-sized packets of 64 bytes, the situation
was much more problematic. Sub-experiments were
conducted to explore the problem, focusing on different
test domains.

Even with only the null filter counting drops, it was
not possible to capture all packets at maximum rate. The
effect of increasing kernel BPF buffer size was exam-
ined, as shown in Table 2. A buffer size of 256 KB ap-
pears optimal. At the speed of 76 Mb the system begins
to drop packets. Larger kernel buffers do not improve
the result. Of course the most important aspect of this
test is that not much more than 10% of the gig-E stream
can be captured without loss.1

Once the maximum packet rate at which the kernel
BPF could keep up was determined, the three previously
described classes 2–4 of filters were tested in isolation.
The BPF filter set tests were run with one and with two
filter sets. The top-N filter test was run with varying
numbers of different flows.

Draft: 2004/10/22 22:14 Page: 3



BPF buffer size starting drop rate (Mb)
32 kB 53.33
128 kB 68.52
256 kB 76.19
512 kB 76.19

Table 2: Minimum Packets and Null Filter

test BPF-sets flow-rate (Mb) drop rate
hardwired 76 0%
BPF 1 68 0%
BPF 2 53 0%

Table 3: Hardwired and BPF Tests

Table 3 shows the results for the hardwired and BPF
tests. Table 4 shows the results for the top-N tests. Hard-
wired filters have no impact on performance. BPF filters
have some impact, and it can be seen that even at a mod-
est 76 Mb as a starting point, real work has a cost. At
this speed, 1000 unique flows is stressful for the top-
N filter. Reducing the flow rate to 45 Mb allowed the
computer to process the data. Unfortunately 10000 flows
with any kernel buffer size or speed simply failed. This
suggests that simple standard hashing techniques might
be too slow to keep up with denial of service attacks.

In a final experiment, all three types of filters were
measured at the same time. Only the flow-rate rate was
varied: the buffer size was held constant at 256 KB. The
IXIA was sending 1000 flows.

Probably because of the top-N filter fielding 1000
flows, the flow-rate had to be reduced by roughly one-
half in order to prevent drops. The filters here are actu-
ally fairly minimal: there is only one BPF filter set. In
reality one would need to use more BPF filter sets, as
this feature is fundamental to the use of Ourmon. The
bottom line is that flow rates as low as 38 Mb/sec were
necessary for even a modest amount of work to be per-
formed without packet loss.

4 Mitigation
The poor performance of the Ourmon probe on even
modest flows of small packets was of obvious concern.
While it has been demonstrated that Ourmon is useful
as an anomaly detector even under conditions of severe
packet loss (indeed, such a loss constitutes an anomaly
indicator in its own right), the exhibited performance
was both unexpectedly poor and a potential threat to
some of the conclusions reached in real-world use. Sev-
eral strategies were thus pursued in improving perfor-
mance: two of these were somewhat successful.

The top-N flow monitor is both one of Ourmon’s most
useful tools and one of its least performant. It was ob-

flows drop-rate buffer-size flow-rate (Mb)
1 0% 256 kB 76
100 1% 256 kB 76
1000 25% 256 kB 76
1000 0% 256 kB 45
10000 50% * *

Table 4: Minimum Packets—top-N Tests

flow-rate (Mb) drop-rate
76 44%
68 37%
53 18%
45 03%
38 0%

Table 5: Minimum Packets—All Filter Types

served that the hashing/caching strategies and data struc-
tures used in the initial implementation of this feature
could be vastly improved. This improvement was done:
initial results have been gratifying. While top-N is still a
bottleneck, much larger flows can now be observed.

The user-level interpreted BPF filter performance also
was a cause for some concern. Ourmon supports hard-
coded C filters: as a stopgap measure, some of the filter-
ing work is being moved into these filters. In the long-
run, a more performant implementation of configurable
filtering is highly desirable.

Evaluation of this mitigation work is not quite com-
plete, but the final report will explain the improvements
in algorithms in more detail and give quantitative mea-
surements.

Other mitigations are highly desirable, but require
much more effort. A number of schemes have been con-
sidered for improving the kernel-level raw packet cap-
ture performance. More measurement work needs to be
done to understand the details of these losses.

5 Concluding Comments
Ourmon is a novel open-source network monitoring and
anomaly detection tool.

The system most similar to Ourmon is probably ntop
[4]. Ntop is a single program intended to run on desk-
tops: it can be viewed as a network version of the UNIX
top program. Ourmon is designed more on the a model
of a traditional distributed SNMP probe: it relies heav-
ily on user programmable BPF and RRDTOOL-based
graphics. From a security point of view, the differences
between Ourmon and ntop are not so important. Ourmon
and ntop are similar lightweight tools that show anoma-
lous behavior via graphs. This contrasts sharply with
an IDS tool like Snort that does signature-based analy-
sis on every packet. Ourmon is lightweight compared to
Snort: it looks only at the network headers, ignoring the
data payload. It is thus reasonable to predict that Snort
would fail to process some network loads that Ourmon
can handle.

There are three points that may be gleaned from these
test results. First, the default BPF buffer size in FreeBSD
of 4 KB is inadequate for a network monitoring system.
A larger buffer of at least 256 KB (modest for modern
systems) is suggested. Network administrators should
understand that a multi-MB buffer may be needed. As
a point of comparison, the current Ourmon probe de-
ployed in the PSU DMZ is running on an 2 GHz Intel
Pentium 4, has a 7 MB kernel buffer, 60 BPF expres-
sions, multiple kinds of top-N filters, and only drops
packets during TCP SYN attacks.

Second, BPF filters seem to have a kernel buffer cost
associated with them. There seems to be a relationship
between kernel buffer space and the number of BPFs

Draft: 2004/10/22 22:14 Page: 4



used by Ourmon. The tests seem to imply that the BPF
mechanism is less costly than the top-N filter. However
the BPF mechanism can have any number of expres-
sions, and the expressions themselves can vary in com-
plexity. Thus it is hard to compare the BPF filter mecha-
nism to the top-N filter mechanism in terms of compute
power.

Finally, it is important not to miss the big picture. A 2
GHz Pentium-4 class computer drops most packets in a
maximum-rate minimum-packet-size flow. These results
are worsened if the computer is expected to do actual
application level work with the data

This last item deserves extended discussion. Consider
an IDS system like Snort that wants to run an arbitrary
number of signatures over not only the packet headers,
but the packet data as well, and may choose to inject the
data into a database system. This appears to be quite
expensive. However, as Bruce Schneier comments [16],
“Security is a chain. It’s only as secure as the weak-
est link.” An IDS system cannot afford to miss a single
packet, as that packet may be the one with the slammer
worm that will infect an internal host. Worse, an attack
on an IDS monitor might first blind it with small packets
and then sneak a one-packet worm payload past it. For
an IDS to effective, small-packet capture must be solved.

Some work has been done to solve this problem. For
example, Mogul and Ramakrishnan [10] present im-
proved operating system scheduling algorithms that can
lead to fair event scheduling, with the result that receive
interrupts cannot freeze out all other operating system
events. Ioannidis et al [5] suggest changing the BPF to
a general purpose compute machine by allowing back-
ward branches, thus increasing the solution space for
compute problems that might be solved in the kernel it-
self. Begel et al [2] report improvements to the BPF
using both machine-code compilation and various opti-
mization techniques. Kreugel et al [7] report an inter-
esting hardware parallel engine based on a flow slicing
technique that is focused on improving Snort’s perfor-
mance under high-speed conditions.

There appears to be no easy solution to the packet-
capture problem. As a result of the tests reported here,
the authors have adopted the long-term objective of try-
ing to produce a parallelized Ourmon system for the In-
tel IXP [1] processor.

Availability
Ourmon is freely available at http://ourmon.cat.
pdx.edu/ourmon under the BSD License.

References
[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G.

Worich, and H. Wilkinson. The Next Generation
of Intel IXP Network Processors. Intel Technology
Journal, August 2002.

[2] A. Begel, S. McCanne, S. Graham. BPF+:
Exploiting Global Data-flow Optimization in a
Generalized Packet Filter Architecture.
Proceedings of ACM SIGCOMM. September
1999.

[3] CERT Advisory CA-2003-04 MS-SQL Server
Worm. http://www.cert.org/

advisories/CA-2003-04.html,
November 2003.

[4] L. Deri and S. Suin. Practical Network Security:
Experiences with ntop, IEEE Communications
Magazine, May 2000.

[5] S. Ioannidis, K. Anagnostakis, J. Ioannidis, and A.
D. Keromytis. xPF: Packet Filtering for Low-Cost
Network Monitoring. In Proceedings of the IEEE
Workshop on High-Performance Switching and
Routing (MPSR), May 2002.

[6] Karlin, Scott, Peterson, Larry, Maximum Packet
Rates for Full-Duplex Ethernet, Technical Report
TR-645-02, Department of Computer Science,
Princeton University, Feb. 2002.

[7] C. Kruegel, F. Valeur, G Vignka, R. Kemmerer.
Stateful Intrusion Detection in High-Speed
Networks. In Proceedings IEEE Symposium
Security and Privacy, IEEE Computer Society
Press, Calif. 2002.

[8] Leffler, et. al., The Design and Implementation of
the 4.3BSD Unix Operating System,
Addison-Wesley, 1989

[9] S. McCanne and V. Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet
Capture. In Proceedings of the Winter 1993
USENIX Conference, San Diego, January 1993.

[10] J.C. Mogul and K.K. Ramakrishnan. Eliminating
Receive Livelock in an Interrupt-Driven Kernel. In
ACM Transactions on Computer Systems,
15(3):217-252, August 1997.

[11] D. Moore, V. Paxson, S. Savage, C. Shannon, S.
Staniford, N. Weaver. The Spread of the
Sapphire/Slammer Worm. http://www.cs.
berkeley.edu/˜nweaver/sapphire.
2003.

[12] Ntop distribution page. http:
//sourceforge.net/projects/ntop.
March 2004.

[13] Ourmon web page.
http://ourmon.cat.pdx.edu/ourmon,
March 2004.

[14] M. Roesch. Snort—Lightweight Intrusion
Detection for Networks. In Proceedings of the
USENIX LISA ’99 Conference, Novemember
1999.

[15] RRDTOOL web page. http://people.ee.
ethz.ch/˜oetiker/webtools/rrdtool.
March 2004.

[16] B. Schneier. Secrets and Lies. p. xii. Wiley
Computer Publishing. 2000.

[17] Tcpdump/libpcap home page.
http://www.tcpdump.org, March 2004.

[18] Waldbusser, S. Remote Network Monitoring
Management Information Base Version 2. IETF.
RFC 2021, January 1997.

Draft: 2004/10/22 22:14 Page: 5


