
CS 201

 Virtual Memory

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

Motivations for Virtual Memory
Use Physical DRAM as a Cache for the DiskUse Physical DRAM as a Cache for the Disk
Simplify Memory ManagementSimplify Memory Management
Provide ProtectionProvide Protection

– 3 – 15-213, F’02

Motivation #1: DRAM a “Cache” for Disk
Full address space is quite large:Full address space is quite large:

 32-bit addresses: ~4,000,000,000 (4 billion) bytes
 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion)

bytes

Disk storage is ~300X cheaper than DRAM storageDisk storage is ~300X cheaper than DRAM storage
 80 GB of DRAM: ~ $33,000
 80 GB of disk: ~ $110

To access large amounts of data in a cost-effective manner,To access large amounts of data in a cost-effective manner,
store the bulk of the data on diskstore the bulk of the data on disk

1GB: ~$200 80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM

– 4 – 15-213, F’02

Levels in Memory Hierarchy

CPU
regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
line size:

32 B
1 ns

8 B

Register Cache Memory Disk Memory
32 KB-4MB
2 ns
$125/MB
32 B

1024 MB
30 ns
$0.20/MB
4 KB

100 GB
8 ms
$0.001/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

– 5 – 15-213, F’02

DRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAMDRAM vs. disk is more extreme than SRAM vs. DRAM

 Access latencies:
 DRAM ~10X slower than SRAM
 Disk ~100,000X slower than DRAM

 Importance of exploiting spatial locality:
 First byte is ~100,000X slower than successive bytes on disk

 Bottom line:
 Design decisions driven by enormous cost of misses

DRAMSRAM Disk

– 6 – 15-213, F’02

Locating an Object in a “Cache”
SRAM CacheSRAM Cache

 Tag stored with cache line
 Maps from cache block to memory address

 Hardware retrieves information
 Cache hit: gets it quickly from the cache
 Cache miss: more slowly from memory

X
Object Name

Tag Data
D 243
X 17

J 105

•••
•••

0:
1:

N-1:

= X?

“Cache”

– 7 – 15-213, F’02

Locating an Object in “Cache” (cont.)

Data
243
 17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
On Disk

“Cache”Page Table

DRAM CacheDRAM Cache
 Each allocated page of virtual memory has entry in page table
 Mapping from virtual pages to physical pages

 From uncached form to cached form
 If the page is not in memory

 “Present” bit is not set
 Page table entry gives disk address

 OS retrieves information

– 8 – 15-213, F’02

Page Faults (like “Cache Misses”)
What if an object is not in memory?What if an object is not in memory?

 Page table entry indicates virtual address not present
 Page fault
 OS exception handler imoves data from disk into memory

 current process suspends, others can resume
 OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

Before fault After fault

– 9 – 15-213, F’02

Motivation #2: Memory Management
Multiple processes can reside in physical memory.Multiple processes can reside in physical memory.
How do we resolve address conflicts?How do we resolve address conflicts?

 what if two processes access something at the same
address?

kernel virtual memory

Memory mapped region
forshared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to
 user code

the “brk” ptr

Linux/x86
process
memory
image

– 10 – 15-213, F’02

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

Solution: Separate Virt. Addr. Spaces
 Virtual and physical address spaces divided into equal-sized

blocks
 blocks are called “pages” (both virtual and physical)

 Each process has its own virtual address space
 operating system controls how virtual pages as assigned to

physical memory

...

...

Virtual
Address
Space for
Process 2:

– 11 – 15-213, F’02

What this means for linking/loading
The linker binds programs to absolute addresses.The linker binds programs to absolute addresses.

 Nothing is left relocatable.
 No relocation at load time.
 No allocation of memory segments at load time.

kernel virtual memory

Memory mapped region
forshared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to
 user code

the “brk” ptr

All
processes
look just
like this

– 12 – 15-213, F’02

Questions
The O. S. allocates pages for the stack on demand.The O. S. allocates pages for the stack on demand.
What does the hardware do when a stack overflows theWhat does the hardware do when a stack overflows the

allocated page?allocated page?
What does the O. S. do in response?What does the O. S. do in response?
Is it possible for the program to keep running?Is it possible for the program to keep running?

– 13 – 15-213, F’02

Motivation #3: Protection
Page table entry contains access rights informationPage table entry contains access rights information

 hardware enforces this protection (trap into OS if violation
occurs) Page Tables

Process i:

Physical AddrRead? Write?
 PP 9Yes No

 PP 4Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•••

•••
•••

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?
 PP 6Yes Yes

 PP 9Yes No

XXXXXXX No No
•••

•••
•••

VP 0:

VP 1:

VP 2:

– 14 – 15-213, F’02

Protection
The O. S. kernel gives each process a virtual memoryThe O. S. kernel gives each process a virtual memory

spacespace
 Each process has its own set of page tables
 Page tables for other processes are not visible
 Process B’s memory is not merely protected from Process A

by permissions
 It doesn’t even exist in Process A’s memory space

Physical memory belonging to another process isPhysical memory belonging to another process is
completely outside the memory space.completely outside the memory space.
 Note: sharing is also possible
 In Linux, threads are a kind of process with shared memory.

– 15 – 15-213, F’02

Virtual Memory = Swapping
Pieces of processes are swapped in and out.Pieces of processes are swapped in and out.
The granularity is the page, not the whole processThe granularity is the page, not the whole process
Pages are not in memory until neededPages are not in memory until needed

 “Demand Paging”
 Pull pages in on demand; i. e., when accessed

– 16 – 15-213, F’02

What happens when a new process
starts running?

No pages are in memory.No pages are in memory.
The first access to an instruction causes a page fault.The first access to an instruction causes a page fault.
Pages are pulled in as needed (Pages are pulled in as needed (““demand pageddemand paged””))

– 17 – 15-213, F’02

What happens when you say
malloc(32000000) ?
What exactly does the O. S. allocate at that time?What exactly does the O. S. allocate at that time?
Is it necessary to allocate 32 MB of physical memory?Is it necessary to allocate 32 MB of physical memory?

– 18 – 15-213, F’02

Question
Suppose a process has a page fault, the kernel mustSuppose a process has a page fault, the kernel must

allocate a physical page of memory, and all physicalallocate a physical page of memory, and all physical
memory is in use by this and other processes.memory is in use by this and other processes.

What does the O. S. do?What does the O. S. do?

– 19 – 15-213, F’02

Page Replacement algorithms
Analogous to cache line replacement.Analogous to cache line replacement.
A complex topic.A complex topic.

 Beyond the scope of this class
 A popular topic with computer scientists because it lends

itself to research.

– 20 – 15-213, F’02

What about code?
Code is read-only.Code is read-only.
We execute it but we donWe execute it but we don’’t write it.t write it.
What happens when the O. S. must evict a page ofWhat happens when the O. S. must evict a page of

code?code?
 Does the O. S. write the page out to disk?

– 21 – 15-213, F’02

P6 page table
translation

CPU

VPN VPO
20 12

TLBT TLBI
416

virtual address (VA)

...
TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO
20 12

Page tables

TLB
miss

TLB
hit

physical
address (PA)

result
32

...

CT CO
20 5

CI
7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1
hit

L1
miss

– 22 – 15-213, F’02

Translating with the P6 Page Tables
(case 1/1)

Case 1/1: pageCase 1/1: page
table and pagetable and page
present.present.

MMU Action:MMU Action:
 MMU builds

physical
address and
fetches data
word.

 OS actionOS action
 none

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO
20 12

20
VPO
12

p=1 PTE p=1

Data
page

data

Page
directory

Page
table

Mem

Disk

– 23 – 15-213, F’02

Translating with the P6 Page Tables
(case 1/0) Case 1/0: page tableCase 1/0: page table

present but pagepresent but page
missing.missing.

MMU Action:MMU Action:
 page fault exception
 handler receives the

following args:
 VA that caused

fault
 fault caused by

non-present page
or page-level
protection violation

 read/write
 user/supervisor

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=1 PTE

Page
directory

Page
table

Mem

Disk
Data
page

data

p=0

– 24 – 15-213, F’02

Translating with the P6 Page Tables
(case 1/0, cont) OS Action:OS Action:

 Check for a legal
virtual address.

 Read PTE through
PDE.

 Find free physical
page (swapping out
current page if
necessary)

 Read virtual page
from disk and copy to
virtual page

 Restart faulting
instruction by
returning from
exception handler.

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=1 PTE p=1

Page
directory

Page
table

Data
page

data

PPN PPO
20 12

Mem

Disk

– 25 – 15-213, F’02

Translating with the P6 Page Tables
(case 0/1) Case 0/1: page tableCase 0/1: page table

missing but pagemissing but page
present.present.

IntroducesIntroduces
consistency issue.consistency issue.
 potentially every

page out requires
update of disk page
table.

Linux disallows thisLinux disallows this
 if a page table is

swapped out, then
swap out its data
pages too.

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=0

PTE p=1

Page
directory

Page
table

Mem

Disk

Data
page

data

– 26 – 15-213, F’02

Translating with the P6 Page Tables
(case 0/0)

Case 0/0: pageCase 0/0: page
table and pagetable and page
missing.missing.

MMU Action:MMU Action:
 page fault

exception

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=0

PTE

Page
directory

Page
table

Mem

Disk
Data
page

datap=0

– 27 – 15-213, F’02

Translating with the P6 Page Tables
(case 0/0, cont)

OS action:OS action:
 swap in page

table.
 restart faulting

instruction by
returning from
handler.

Like case 0/1 fromLike case 0/1 from
here on.here on.

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=1 PTE

Page
directory

Page
table

Mem

Disk
Data
page

data

p=0

– 28 – 15-213, F’02

What happens after a page fault is
handled?
A process touches an unmapped memory address.A process touches an unmapped memory address.
The hardware generates a fault.The hardware generates a fault.
The O. S. kernel gets the required page and maps it.The O. S. kernel gets the required page and maps it.
The fault handler returns control to The fault handler returns control to …… where? where?

– 29 – 15-213, F’02

vm_next

vm_next

Linux Organizes VM as Collection of
“Areas”
task_struct

mm_struct
pgdmm

mmap

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

0x08048000

0x0804a020

0x40000000

 pgd:
 page directory address

 vm_prot:
 read/write permissions

for this area
 vm_flags

 shared with other
processes or private to
this process

vm_flags

vm_flags

vm_flags

– 30 – 15-213, F’02

Linux Page Fault Handling

vm_area_struct
vm_end

r/o

vm_next

vm_start

vm_end

r/w

vm_next

vm_start

vm_end

r/o

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

Is the VA legal?Is the VA legal?
 i.e. is it in an area

defined by a
vm_area_struct?

 if not then signal
segmentation
violation (e.g. (1))

Is the operation legal?Is the operation legal?
 i.e., can the process

read/write this area?
 if not then signal

protection violation
(e.g., (2))

If OK, handle faultIf OK, handle fault
 e.g., (3)

write

read

read
1

2

3

– 31 – 15-213, F’02

Memory Mapping
Creation of new VM Creation of new VM areaarea done via done via ““memory mappingmemory mapping””

 create new vm_area_struct and page tables for area
 area can be backed by (i.e., get its initial values from) :

 regular file on disk (e.g., an executable object file)
» initial page bytes come from a section of a file

 nothing (e.g., bss)
» initial page bytes are zeros

 dirty pages are swapped back and forth between a special
swap file.

Key pointKey point: no virtual pages are copied into physical: no virtual pages are copied into physical
memory until they are referenced!memory until they are referenced!
 known as “demand paging”
 crucial for time and space efficiency

– 32 – 15-213, F’02

Putting it all together
Do practice problem 10.4 on page 715 of B & O.Do practice problem 10.4 on page 715 of B & O.
After each of the 4 parts, letAfter each of the 4 parts, let’’s reconvene and review thes reconvene and review the

solution to that part, then go on.solution to that part, then go on.

– 33 – 15-213, F’02

Exec() Revisited

kernel code/data/stack

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp
process
 VM

brk

0xc0

physical memorysame
for each
process

process-specific data
structures

(page tables,
task and mm structs)

kernel
VM

To run a new program p in theTo run a new program p in the
current process usingcurrent process using
exec()exec()::
 free vm_area_struct’s and

page tables for old areas.
 create new vm_area_struct’s

and page tables for new
areas.
stack, bss, data, text, shared

libs.
 text and data backed by ELF

executable object file.
bss and stack initialized to

zero.
 set PC to entry point in .text

Linux will swap in code and
data pages as needed..data

.text
p

demand-zero

demand-zero

libc.so

.data
.text

– 34 – 15-213, F’02

Fork() Revisited
To create a new process using To create a new process using fork()fork()::

make copies of the old processmake copies of the old process’’s mm_s mm_structstruct,,
vmvm_area__area_structstruct’’ss, and page tables., and page tables.
 at this point the two processes are sharing all of their pages.
 How to get separate spaces without copying all the virtual

pages from one space to another?
 “copy on write” technique.

– 35 – 15-213, F’02

Fork() Revisited
copy-on-writecopy-on-write

 make pages of writeable areas read-only
 flag vm_area_struct’s for these areas as private “copy-on-

write”.
 writes by either process to these pages will cause page

faults.
 fault handler recognizes copy-on-write, makes a copy of the

page, and restores write permissions.

Net result:Net result:
 copies are deferred until absolutely necessary (i.e., when

one of the processes tries to modify a shared page).

– 36 – 15-213, F’02

What does copy-on-write buy us?
What do most child processes do soon after a fork?What do most child processes do soon after a fork?

– 37 – 15-213, F’02

When a process calls exec…
All its vm_area_structs and page tables are freed.All its vm_area_structs and page tables are freed.
Is the physical memory freed?Is the physical memory freed?
How does the O. S. deal with shared pages?How does the O. S. deal with shared pages?

– 38 – 15-213, F’02

Review Problem
When a process calls fork, what does the operatingWhen a process calls fork, what does the operating

system do in terms of memory managament?system do in terms of memory managament?
Describe what physical memory is allocated or freed,Describe what physical memory is allocated or freed,
for which processes.for which processes.

When a process calls exec, what does the operatingWhen a process calls exec, what does the operating
system do in terms of memory managament?system do in terms of memory managament?
Describe what physical memory is allocated or freed,Describe what physical memory is allocated or freed,
for which processes.for which processes.

– 39 – 15-213, F’02

Can we write VM-friendly programs?
Yes, definitely.Yes, definitely.
Remember Remember ““cache-friendlycache-friendly”” code? code?
In this case a In this case a ““cache linecache line”” is analogous to a page. is analogous to a page.
General principles:General principles:

 Spatial and temporal locality
 Try to re-use recently used data
 Keep the “working set” relatively small

With VM we donWith VM we don’’t have a fixed-size cachet have a fixed-size cache
 How many pages we can use depends on the system load

and total size of system memory
 Factors we can’t control or even know

– 40 – 15-213, F’02

Main Themes
ProgrammerProgrammer’’s Views View

 Large “flat” address space
 Can allocate large blocks of contiguous addresses

 Process “owns” machine
 Has private address space
 Unaffected by behavior of other processes

System ViewSystem View
 User virtual address space created by mapping to set of

pages
 Need not be contiguous
 Allocated dynamically
 Enforce protection during address translation

 OS manages many processes simultaneously
 Continually switching among processes
 Especially when one must wait for resource

» E.g., disk I/O to handle page fault

