CS 201

Virtual Memory

Gerson Robboy
Portland State University

Motivations for Virtual Memory
Use Physical DRAM as a Cache for the Disk

Simplify Memory Management

Provide Protection

-2 - 15-213, F’02

Motivation #1: DRAM a “Cache” for Disk

Full address space is quite large:

m 32-bit addresses: ~4,000,000,000 (4 billion) bytes
m 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion)
bytes

Disk storage is ~300X cheaper than DRAM storage
= 80 GB of DRAM: ~ $33,000
= 80 GB of disk: ~ $110

To access large amounts of data in a cost-effective manner,
store the bulk of the data on disk

1GB: ~$200 /806'5: ~$1
4 MB: ~$500 < =
SRAM | «——> DRAM |¢—» Disk

3 ~— " 5213, F02

Levels in Memory Hierarchy

size:
speed:

$/Mbyte:
line size:

cache virtual memory
< > <« >
C
CPU | 8B |a| 32B|Memory| 4B @
regs N
e
Register Cache Memory Disk Memory
32B 32 KB-4MB 1024 MB 100 GB
1ns 2ns 30 ns 8 ms
$125/MB $0.20/MB $0.001/MB
8B 32B 4 KB

Iarger, slower, cheaEer :

15-213, F’02

DRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM

m Access latencies:
e DRAM ~10X slower than SRAM
® Disk ~100,000X slower than DRAM

m Importance of exploiting spatial locality:

® First byte is ~100,000X slower than successive bytes on disk

m Bottom line:
® Design decisions driven by enormous cost of misses

SRAM [«——| DRAM |¢—» Disk

15-213, F’02

Locating an Object in a “Cache”

SRAM Cache

m Tag stored with cache line
e Maps from cache block to memory address
m Hardware retrieves information

® Cache hit: gets it quickly from the cache
® Cache miss: more slowly from memory

“Cache”
Tag Data
Object Name 0/ D 243
X =X? < = X 17 |
h J 105

_6— 15-213, F'02

Locating an Object in “Cache” (cont.)

DRAM Cache

m Each allocated page of virtual memory has entry in page table
m Mapping from virtual pages to physical pages
® From uncached form to cached form

m If the page is not in memory
® “Present” bit is not set
® Page table entry gives disk address

m OS retrieves information

Page Table “Cache”
Location Data
Object Name D: 0 0: 243
X \ J: | On :Dlsk 1/' 1:7 G
- : J _— :
X: 1 N-1: 105

7 15-213, F’02

Page Faults (like “Cache Misses”)

What if an object is not in memory?
m Page table entry indicates virtual address not present
m Page fault

m OS exception handler imoves data from disk into memory
® current process suspends, others can resume
e OS has full control over placement, etc.

Before fault After fault
Memory Memory
Page Table Page Table
Virtual i
Addresses Zlé}glscsaés : Virtual Physical

Addresses

CPU 1.

CPU n 4

. <
..........

g 15-213, F'02

Motivation #2: Memory Management

Multiple processes can reside in physical memory.

How do we resolve address conflicts?

m what if two processes access something at the same

address?

%esp

Linux/x86
process

memory
image

kernel virtual memory

stack

v
A

Memory mapped region
forshared libraries

A

runtime heap (via malloc)

uninitialized data (.bss)

initialized data (.data)

program text (.text)

forbidden

memory invisible to
user code

the “brk” ptr

15-213, F’02

Solution: Separate Virt. Addr. Spaces

m Virtual and physical address spaces divided into equal-sized
blocks

® blocks are called “pages” (both virtual and physical)

m Each process has its own virtual address space

® operating system controls how virtual pages as assigned to
physical memory

0

Virtual 0 Address Translation Physical
Address VP 1 » PP2 Address
Space for VP2 Space
Process 1: (DRAM)
N-1
(e.g., read/only
Virtual PP7 library code)
irtua 0
VP 1
Address VP 2 PP 10
Space for
Process 2: M-1
N-1

—10 - 15-213, F’02

What this means for linking/loading

The linker binds programs to absolute addresses.
m Nothing is left relocatable.
m No relocation at load time.
m No allocation of memory segments at load time.

%esp

All
processes
look just
like this

—-11 -

kernel virtual memory

stack

v
A

Memory mapped region
forshared libraries

A

runtime heap (via malloc)

uninitialized data (.bss)

initialized data (.data)

program text (.text)

forbidden

memory invisible to
user code

the “brk” ptr

15-213, F’02

Questions

The O. S. allocates pages for the stack on demand.

What does the hardware do when a stack overflows the
allocated page?

What does the O. S. do in response?

Is it possible for the program to keep running?

12— 15-213, F’02

Motivation #3: Protection

Page table entry contains access rights information
m hardware enforces this protection (trap into OS if violation

Memory

occurs) Page Tables
Read? Write? Physical Addr
VP 0:] Yes No PP 9
Process i: [vP 1] Yes || Yes PP 4
VP 2:] No No XXXXXXX
Read? Write? Physical Addr
VP 0:] Yes Yes PP 6
Process j: [WP 1] Yes |[No PP9
VP 2:] No No XXXXXXX

—13—

15-213, F’02

Protection

The O. S. kernel gives each process a virtual memory
space
m Each process has its own set of page tables
m Page tables for other processes are not visible

m Process B’s memory is not merely protected from Process A
by permissions
® It doesn’t even exist in Process A’s memory space

Physical memory belonging to another process is
completely outside the memory space.

m Note: sharing is also possible
m In Linux, threads are a kind of process with shared memory.

14— 15-213, F’02

Virtual Memory = Swapping

Pieces of processes are swapped in and out.
The granularity is the page, not the whole process

Pages are not in memory until needed
= “Demand Paging”
m Pull pages in on demand; i. e., when accessed

—15— 15-213, F’02

What happens when a new process
starts running?

No pages are in memory.
The first access to an instruction causes a page fault.

Pages are pulled in as needed (“demand paged”)

- 16 — 15-213, F’02

What happens when you say
malloc(32000000) ?

What exactly does the O. S. allocate at that time?

Is it necessary to allocate 32 MB of physical memory?

17— 15-213, F’02

Question

Suppose a process has a page fault, the kernel must
allocate a physical page of memory, and all physical
memory is in use by this and other processes.

What does the O. S. do?

_ 18— 15-213, F'02

Page Replacement algorithms

Analogous to cache line replacement.

A complex topic.
m Beyond the scope of this class

m A popular topic with computer scientists because it lends
itself to research.

_ 19— 15-213, F'02

What about code?

Code is read-only.
We execute it but we don’t write it.

What happens when the O. S. must evict a page of
code?

m Does the O. S. write the page out to disk?

- 20 — 15-213, F’02

P6 page table

translation

CPU 22
< result |« L2 andDRAM
A
20 l 12_ yirtual address (VA)
_' VPN | VPO, L1 L1
161) hit miss
TLBT| TLBI
|
oy TLB L1 (128 sets, 4 lines/set)
TLB — hit —
miss > 7
q | | | | | | | | [
vi0 10 LB (16 sets, T T T T
VPN1 4 en set)
20y v12 20 7. 5
PPN |[PPO| ==Pp CT Cl|CO
A
> PDE | L » PTE physical
address (PA)
P Page tables

_oq 2 15-213, F’02

Translating with the P6 Page Tables
(case 1/1)

20 12 Case 1/1: page
VPN | VPO4 table and page
present.
20 2
VPN1[VPN2 PPN |PPO¢ MMU Action:
@
i = MMU builds
Mem physical
» PDE [p=1— —»PTE [p=1 dafa |« address and
fetches data
PDBR —> word.
Page Page Data
directory table page ® OS action
"""""""""""" = hone
Disk
15-213, F’02

—20 _

Translating with the P6 Page Tables
(case 1/0)

20 12

LI VPN VPO

VPN1|VPN2

Mem
PDBR

23—

PTE [p=0

Case 1/0: page table
present but page
missing.

MMU Action:

m page fault exception
m handler receives the

Page
directory

Page
table

following args:

e VA that caused
fault

e fault caused by
non-present page
or page-level
protection violation

® read/write

® user/supervisor

15-213, F’02

Translating with the P6 Page Tables

(case 1/05 cont) OS Action:
20 12 = Check for a legal
VPN VPO4 virtual address.
m Read PTE through
20 12 PDE.

VPN VPTNZ PPN |PPOs— m Find free physical
page (swapping out
current page if

Mem » PDE[p=1]— L » PTE [p=1 gaa 1| hecessary)
SDER m Read virtual page
—> from disk and copy to
Page Page Data virtual page Py
directory table page

—— = Restart faulting
instruction by
returning from
exception handler.

—_ 24 — 15-213, F’02

Translating with the P6 Page Tables

(case 0/1)
20 12
Ll VPN | VPO
VPN1|VPN2
Mem PDE [p=0|— data
PDBR
Page Data
directory page
] PTE [p=1
Disk
_>
Page
table

_ 25—

Case 0/1: page table
missing but page
present.

Introduces
consistency issue.

m potentially every
page out requires
update of disk page
table.

Linux disallows this

m if a page table is
swapped out, then
swap out its data
pages too.

15-213, F’02

Translating with the P6 Page Tables

(case 0/0)

20

12

LI VPN | VPO
DI.PN1 VPN2
Mem » PDE [p=0}—
PDBR
Page
directory
] PTE [p=0
Disk
_>
Page
table

— 26 —

Case 0/0: page
table and page

missing.
MMU Action:
m page fault
exception
data
Data
page 15-213, F’'02

Translating with the P6 Page Tables
(case 0/0, cont)

20 12

LI VPN | VPO OS action:

m swap in page
DI.PN1 VPN2 table.
m restart faulting

instruction by
returning from

Mem » PDE [p=1 PTE [p=0}—
handler.
PDBR

dil';iggry faabﬂg Like case 0/1 from
... here on.
D' k data

IS
_r
Data

o7 page 15-213, F'02

What happens after a page fault is
handled?

A process touches an unmapped memory address.
The hardware generates a fault.

The O. S. kernel gets the required page and maps it.
The fault handler returns control to ... where?

— 28 — 15-213, F’02

Linux Organizes VM as Collection of

“Areas”

task struct

mm_ struct

mm > pad

mmap

m pgd:
e page directory address
® vim_prot:
e read/write permissions
for this area
m vm_flags
e shared with other

processes or private to
this process

— 29—

vim_area_struct

process virtual memory

vm_end

vim_start

vim_prot

vim_flags

R

vm_next

shared libraries

0x40000000

vm_end

vim_start

vim_prot

vm_flags

data

0x0804a020

vim_next

N\ /]

vm_end

vim_start

text

0x08048000

vim_prot

vim_flags

vim_next

0

15-213, F’02

Linux Page Fault Handling

vim_area_struct

process virtual memory

—30-—

vm_end
vm_start
r/o
shared libraries
vm_ next
-, _ ‘ read
vm_en
vm_start T @
i \ data read
<7
vm_next @
L, / . Write
vm_end text
vm_start
r/o
vm_ next

Is the VA legal?

m i.e.isitin an area
defined by a
vm_area_struct?

m if not then signal
segmentation
violation (e.g. (1))

Is the operation legal?

m i.e., can the process
read/write this area?

m if not then signal
protection violation

(e.g., (2))
If OK, handle fault
= e.g., (3)

15-213, F’02

Memory Mapping

Creation of new VM area done via “memory mapping”
m create new vm_area_struct and page tables for area

m area can be backed by (i.e., get its initial values from) :
® regular file on disk (e.g., an executable object file)
» initial page bytes come from a section of a file
® nothing (e.g., bss)
» Initial page bytes are zeros

m dirty pages are swapped back and forth between a special
swap file.

Key point: no virtual pages are copied into physical
memory until they are referenced!
m known as “demand paging”
m crucial for time and space efficiency

3q 15-213, F'02

Putting it all together

Do practice problem 10.4 on page 715 of B & O.

After each of the 4 parts, let’s reconvene and review the
solution to that part, then go on.

- 32 — 15-213, F’02

Exec() Revisited

process-specific data
structures
(page tables,
task and mm structs)

same physical memory
for each/
process kernel code/data/stack
Oxc0 \
%esp stack
Memory mapped region
for shared libraries
brk —p 4

runtime heap (via malloc)

uninitialized data (.bss)

initialized data (.data)

program text (.text)

forbidden

— 33 —

To run a new program p in the
current process using
exec():

m free vm_area_struct’s and
page tables for old areas.

m create new vm_area_struct’s

kernel

VM and page tables for new
<——demand-zero areas.

process e stack, bss, data, text, shared

VM .

libs.
<— .data e text and data backed by ELF
+“— _.text executable object file.
libc.so e bss and stack initialized to

<«— demand-zero

«— .data
<« dext
P

Z€ero.

m set PC to entry point in .text

e Linux will swap in code and
data pages as needed.

15-213, F’02

Fork() Revisited

To create a new process using fork ():

make copies of the old process’s mm_struct,
vim_area_struct’s, and page tables.

m at this point the two processes are sharing all of their pages.

m How to get separate spaces without copying all the virtual
pages from one space to another?
® “copy on write” technique.

—34 - 15-213, F'02

Fork() Revisited

copy-on-write
m make pages of writeable areas read-only

m flag vm_area_struct’s for these areas as private “copy-on-
write”.

m writes by either process to these pages will cause page
faults.

e fault handler recognizes copy-on-write, makes a copy of the
page, and restores write permissions.

Net result:

m copies are deferred until absolutely necessary (i.e., when
one of the processes tries to modify a shared page).

35 15-213, F'02

What does copy-on-write buy us?

What do most child processes do soon after a fork?

— 36— 15-213, F’02

When a process calls exec...

All its vm_area_structs and page tables are freed.
Is the physical memory freed?
How does the O. S. deal with shared pages?

_37-—

15-213, F’02

Review Problem

When a process calls fork, what does the operating
system do in terms of memory managament?
Describe what physical memory is allocated or freed,
for which processes.

When a process calls exec, what does the operating
system do in terms of memory managament?
Describe what physical memory is allocated or freed,
for which processes.

— 38— 15-213, F’02

Can we write VM-friendly programs?
Yes, definitely.

Remember “cache-friendly” code?

In this case a “cache line” is analogous to a page.

General principles:
m Spatial and temporal locality
m Try to re-use recently used data
m Keep the “working set” relatively small

With VM we don’t have a fixed-size cache

= How many pages we can use depends on the system load
and total size of system memory

m Factors we can’t control or even know

— 39— 15-213, F’02

Main Themes

Programmer’s View

m Large “flat” address space
e Can allocate large blocks of contiguous addresses
m Process “owns” machine

® Has private address space
e Unaffected by behavior of other processes

System View
m User virtual address space created by mapping to set of
pages
® Need not be contiguous
® Allocated dynamically
e Enforce protection during address translation

m OS manages many processes simultaneously
e Continually switching among processes
e Especially when one must wait for resource
» E.g., disk /O to handle page fault

— 40 -

15-213, F’02

