### **CS 201**

### **Virtual Memory**

Gerson Robboy Portland State University

## **Motivations for Virtual Memory**

**Use Physical DRAM as a Cache for the Disk** 

- Simplify Memory Management
- **Provide Protection**

### Motivation #1: DRAM a "Cache" for Disk

#### Full address space is quite large:

- 32-bit addresses: ~4,000,000,000 (4 billion) bytes
- 64-bit addresses: ~16,000,000,000,000,000 (16 quintillion) bytes

### **Disk storage is ~300X cheaper than DRAM storage**

- 80 GB of DRAM: ~ \$33,000
- 80 GB of disk: ~ \$110

-3-

## To access large amounts of data in a cost-effective manner, store the bulk of the data on disk



## **Levels in Memory Hierarchy**



### **DRAM** as a "Cache"

#### DRAM vs. disk is more extreme than SRAM vs. DRAM

- Access latencies:
  - DRAM ~10X slower than SRAM
  - Disk ~100,000X slower than DRAM
- Importance of exploiting spatial locality:
  - First byte is ~100,000X slower than successive bytes on disk
- Bottom line:

- 5 -

• Design decisions driven by enormous cost of misses



## Locating an Object in a "Cache"

### **SRAM Cache**

- Tag stored with cache line
  - Maps from cache block to memory address
- Hardware retrieves information
  - Cache hit: gets it quickly from the cache
  - Cache miss: more slowly from memory



15-213, F'02

## Locating an Object in "Cache" (cont.)

### **DRAM Cache**

- Each allocated page of virtual memory has entry in *page table*
- Mapping from virtual pages to physical pages
  - From uncached form to cached form
- If the page is not in memory
  - "Present" bit is not set
  - Page table entry gives disk address
- OS retrieves information



## Page Faults (like "Cache Misses")

### What if an object is not in memory?

- Page table entry indicates virtual address not present
- Page fault
- OS exception handler imoves data from disk into memory
  - current process suspends, others can resume
  - OS has full control over placement, etc.

### **Before fault**

#### After fault



## **Motivation #2: Memory Management**

Multiple processes can reside in physical memory.

How do we resolve address conflicts?

what if two processes access something at the same address?



## **Solution: Separate Virt. Addr. Spaces**

- Virtual and physical address spaces divided into equal-sized blocks
  - blocks are called "pages" (both virtual and physical)
- Each process has its own virtual address space
  - operating system controls how virtual pages as assigned to physical memory



## What this means for linking/loading

### The linker binds programs to absolute addresses.

- Nothing is left relocatable.
- No relocation at load time.
- No allocation of memory segments at load time.



### Questions

The O. S. allocates pages for the stack on demand.

What does the hardware do when a stack overflows the allocated page?

What does the O. S. do in response?

Is it possible for the program to keep running?

### **Motivation #3: Protection**

### Page table entry contains access rights information

hardware enforces this protection (trap into OS if violation occurs)
Page Tables



15-213, F'02

### Protection

- The O. S. kernel gives each process a virtual memory space
  - Each process has its own set of page tables
  - Page tables for other processes are not visible
  - Process B's memory is not merely protected from Process A by permissions
    - It doesn't even exist in Process A's memory space

## Physical memory belonging to another process is completely outside the memory space.

- Note: sharing is also possible
- In Linux, threads are a kind of process with shared memory.

### Virtual Memory = Swapping

Pieces of processes are swapped in and out.

The granularity is the page, not the whole process

Pages are not in memory until needed

- "Demand Paging"
- Pull pages in on demand; i. e., when accessed

## What happens when a new process starts running?

No pages are in memory.

The first access to an instruction causes a page fault.

Pages are pulled in as needed ("demand paged")

## What happens when you say malloc(3200000)?

### What exactly does the O. S. allocate at that time?

Is it necessary to allocate 32 MB of physical memory?



Suppose a process has a page fault, the kernel must allocate a physical page of memory, and all physical memory is in use by this and other processes.

What does the O. S. do?

## **Page Replacement algorithms**

Analogous to cache line replacement.

### A complex topic.

- Beyond the scope of this class
- A popular topic with computer scientists because it lends itself to research.

### What about code?

Code is read-only.

We execute it but we don't write it.

What happens when the O. S. must evict a page of code?

Does the O. S. write the page out to disk?



# Translating with the P6 Page Tables (case 1/1)



15-213, F'02

### **Translating with the P6 Page Tables** (case 1/0)



Case 1/0: page table present but page missing.

### **MMU Action:**

- page fault exception
- handler receives the following args:
  - VA that caused fault
  - fault caused by non-present page or page-level protection violation
  - read/write
  - user/supervisor

### **Translating with the P6 Page Tables** (case 1/0, cont) **OS Action:**



Disk

- Check for a legal virtual address.
- Read PTE through PDE.
- **Find free physical** page (swapping out current page if necessary)
- Read virtual page from disk and copy to virtual page
- **Restart faulting** instruction by returning from exception handler.

### Translating with the P6 Page Tables (case 0/1) Case 0/1: page table



Case 0/1: page table missing but page present.

#### Introduces consistency issue.

- potentially every page out requires update of disk page table.
- Linux disallows this
  - if a page table is swapped out, then swap out its data pages too.

15-213, F'02

## Translating with the P6 Page Tables (case 0/0)



Case 0/0: page table and page missing. MMU Action:

> page fault exception



# Translating with the P6 Page Tables (case 0/0, cont)



## What happens after a page fault is handled?

A process touches an unmapped memory address.

The hardware generates a fault.

The O. S. kernel gets the required page and maps it.

The fault handler returns control to ... where?

### Linux Organizes VM as Collection of "Areas"



15-213, F'02

## **Linux Page Fault Handling**



## **Memory Mapping**

Creation of new VM area done via "memory mapping"

- create new vm\_area\_struct and page tables for area
- area can be backed by (i.e., get its initial values from) :
  - regular file on disk (e.g., an executable object file)
    - » initial page bytes come from a section of a file
  - nothing (e.g., bss)
    - » initial page bytes are zeros
- dirty pages are swapped back and forth between a special swap file.

Key point: no virtual pages are copied into physical memory until they are referenced!

- known as "demand paging"
- crucial for time and space efficiency

## Putting it all together

Do practice problem 10.4 on page 715 of B & O.

After each of the 4 parts, let's reconvene and review the solution to that part, then go on.

## **Exec() Revisited**



To run a new program p in the current process using exec():

- free vm\_area\_struct's and page tables for old areas.
- create new vm\_area\_struct's and page tables for new areas.
  - stack, bss, data, text, shared libs.
  - text and data backed by ELF executable object file.
  - bss and stack initialized to zero.
- set PC to entry point in .text
  - Linux will swap in code and data pages as needed.

## Fork() Revisited

To create a new process using fork():

### make copies of the old process's mm\_struct, vm\_area\_struct's, and page tables.

- at this point the two processes are sharing all of their pages.
- How to get separate spaces without copying all the virtual pages from one space to another?
  - "copy on write" technique.

## Fork() Revisited

### copy-on-write

- make pages of writeable areas read-only
- flag vm\_area\_struct's for these areas as private "copy-onwrite".
- writes by either process to these pages will cause page faults.
  - fault handler recognizes copy-on-write, makes a copy of the page, and restores write permissions.

### Net result:

copies are deferred until absolutely necessary (i.e., when one of the processes tries to modify a shared page).

### What does copy-on-write buy us?

What do most child processes do soon after a fork?

### When a process calls exec...

All its vm\_area\_structs and page tables are freed. Is the physical memory freed? How does the O. S. deal with shared pages?

### **Review Problem**

When a process calls fork, what does the operating system do in terms of memory managament? Describe what physical memory is allocated or freed, for which processes.

When a process calls exec, what does the operating system do in terms of memory managament? Describe what physical memory is allocated or freed, for which processes. Can we write VM-friendly programs?

Yes, definitely.

**Remember "cache-friendly" code?** 

In this case a "cache line" is analogous to a page.

### **General principles:**

- Spatial and temporal locality
- Try to re-use recently used data
- Keep the "working set" relatively small

### With VM we don't have a fixed-size cache

- How many pages we can use depends on the system load and total size of system memory
- Factors we can't control or even know

## **Main Themes**

### **Programmer's View**

- Large "flat" address space
  - Can allocate large blocks of contiguous addresses
- Process "owns" machine
  - Has private address space
  - Unaffected by behavior of other processes

### **System View**

- User virtual address space created by mapping to set of pages
  - Need not be contiguous
  - Allocated dynamically
  - Enforce protection during address translation
- OS manages many processes simultaneously
  - Continually switching among processes
  - Especially when one must wait for resource
    - » E.g., disk I/O to handle page fault