
CS 201

 Files and I/O

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

A Typical Hardware System

main
memory

I/O
bridgebus interface

ALU

register file
CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus Expansion slots for
other devices such
as network adapters.

– 3 – 15-213, F’02

Some typical hardware components
 Hard disk
 CD-ROM
 Printer
 Screen
 Keyboard
 Mouse
 Floppy disk
 Zip drive
 Network controller
 Modem

Each of these has a detailed, unique interfaceEach of these has a detailed, unique interface
 Not standardized between different manufacturers

– 4 – 15-213, F’02

Hard Disk DrivePhysical Layer

Platters

Spindle We shall stack 1 to 20 metal
discs, each side covered with
magnetic recording material,
and bind them by a central
spindle.

They will be spun at 7,200
RPMs.

Seek time, hierarchy of
controllers, transfer rate, …

Tracks

Platter:

Track:

Sectors

gaps

(1 to 20)

(500 to 2500)

(64)

Sector# data ECC

Sector

– 5 – 15-213, F’02

As programmers, we don’t want to
see all that!
 We want a simple, portable abstraction for I/OWe want a simple, portable abstraction for I/O
 Device drivers in the operating system take care ofDevice drivers in the operating system take care of

the device interfacesthe device interfaces
 As application programmers, we want all devices toAs application programmers, we want all devices to

look alikelook alike

– 6 – 15-213, F’02

And here’s another problem
 We donWe don’’t want to manage data allocation on a diskt want to manage data allocation on a disk

 Nor do we want to know about platters, sectors, tracks, …

 The O. S. file manager allows us to deal with files,The O. S. file manager allows us to deal with files,
not disks.not disks.

 What is a file, anyway?What is a file, anyway?
 A collection of data managed by the O. S.
 We can open it by name

 We don’t care “where” it is, only its name.
 We don’t have to allocate space for it.
 We don’t have to know what the underlying medium looks

like.

– 7 – 15-213, F’02

Can devices and files be handled byCan devices and files be handled by
one single abstraction?one single abstraction?

– 8 – 15-213, F’02

Unix Files
A A filefile is a named sequence of is a named sequence of mm bytes: bytes:

 B0, B1, , Bk , , Bm-1

We open it by name. Then we see it as a stream ofWe open it by name. Then we see it as a stream of
bytes.bytes.
 At the O. S. level, there is no internal structure to a file

– 9 – 15-213, F’02

Unix Files - a brief digression

If a file is a sequence of bytes, does that mean filesIf a file is a sequence of bytes, does that mean files
always contain strings of characters?always contain strings of characters?

The declaration of The declaration of read read according to K&R:according to K&R:
int read(int fd, char *buf, int n);int read(int fd, char *buf, int n);

Does Does ““char *bufchar *buf”” mean buf contains ascii characters? mean buf contains ascii characters?
 If not, then why declare it as char * ?

Declaration of read in newer versions of Linux:Declaration of read in newer versions of Linux:
ssize_t read(int fd, void *buf, size_t count);ssize_t read(int fd, void *buf, size_t count);

– 10 – 15-213, F’02

Unix Files
Unix (Bell Labs, late 1960s) introduced two profoundUnix (Bell Labs, late 1960s) introduced two profound

innovations regarding files:innovations regarding files:

Almost everything is a file.
 One abstraction for accessing most external things, including

I/O devices and data stored in files on a disk.
A file is a stream of bytes, with no other structure.

 No “records”
 Higher levels of structure are an application concept, not an

operating system concept.
 Libraries are available if you want structured files.

– 11 – 15-213, F’02

Internally, Unix has two kinds of
Files
Regular filesRegular files

 Data maintained on a storage device such as a hard disk
 The O. S. file manager organizes and retrieves the data

Special filesSpecial files
 All I/O devices are represented as files:

 /dev/sda2 (/usr disk partition)
 /dev/tty2 (terminal)

 Even the kernel is represented as a file:
 /dev/kmem (kernel memory image)
 /proc (kernel data structures for processes)

To us as programmers, theyTo us as programmers, they’’re all just files.re all just files.

– 12 – 15-213, F’02

Well, OK, a few more types have crept in
Regular fileRegular file

 File system on a disk, managed by the O. S.

DirectoryDirectory
 A file that contains the names and locations of other files.
 Normally, user programs don’t open and read directories.

The “ls” utility is an exception.

Character special and block special filesCharacter special and block special files
 Terminals (character special) and disks (block special)

FIFO (named pipe)FIFO (named pipe)
 A file type used for interprocess comunication

SocketSocket
 A file type used for network communication between

processes

– 13 – 15-213, F’02

Unix I/O
Key Unix idea: All input and output is handled in aKey Unix idea: All input and output is handled in a

consistent and uniform way.consistent and uniform way.
Basic Unix I/O operations (system calls):Basic Unix I/O operations (system calls):

 Opening and closing files
 open()and close()

 Changing the current file position (seeking)
 lseek()

 Reading and writing a file
 read() and write()

– 14 – 15-213, F’02

Opening Files

Returns a small identifying integer Returns a small identifying integer file descriptorfile descriptor
 fd == -1  an error occurred

Each process created by a Unix shell begins life withEach process created by a Unix shell begins life with
three open files (normally associated with a terminal):three open files (normally associated with a terminal):
 0: standard input
 1: standard output
 2: standard error

#include <syscalls.h>
int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0)
{
 perror(“open”);
 exit(1);
}

– 15 – 15-213, F’02

Opening Files
The second argument is a constant defined in syscalls.hThe second argument is a constant defined in syscalls.h
There are a zillion values for it. Some important ones:There are a zillion values for it. Some important ones:

O_CREAT: Create a new file if it doesn’t exist
O_RDRW: Open for reading and writing
O_RDONLY: Open for reading only
O_WRONLY: Open for writing only
O_TRUNC: Truncate the file to length zero

 If the file existed and had data, that data will disappear for all
users.

– 16 – 15-213, F’02

Opening files that don’t already exist

The third argument sets permissionsThe third argument sets permissions
 In this example, read, write, and execute for user
 The argument is required if creating a new file, else ignored

What if you leave this argument out?What if you leave this argument out?

#include <syscalls.h>
int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDWR|O_CREAT, S_IRWXU)) < 0)
{
 perror(“open”);
 exit(1);
}

– 17 – 15-213, F’02

Opening Files
Why do you have to check for errors after opening aWhy do you have to check for errors after opening a

file?file?
What kinds of things can make it fail?What kinds of things can make it fail?

– 18 – 15-213, F’02

Writing Files

Returns number of bytes written from Returns number of bytes written from bufbuf to file to file fdfd..
 nbytes < 0 indicates that an error occurred.
 As with reads, short counts are possible and are not errors.

#include <syscalls.h>
char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
 perror(“write”);
 exit(1);
}

– 19 – 15-213, F’02

What is the current file position?What is the current file position?

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

if ((fd = open(“some_file”, O_RDWR)) < 0) {
 perror(“open”);
 exit(1);
}
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
 perror(“write”);
 exit(1);
}

– 20 – 15-213, F’02

Closing Files
Closing a file informs the kernel that you are finishedClosing a file informs the kernel that you are finished

accessing that file.accessing that file.

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
 perror(“close”);
 exit(1);
}

– 21 – 15-213, F’02

Reading Files
Reading a file copies bytes from the current fileReading a file copies bytes from the current file

position to memory, and then updates file position.position to memory, and then updates file position.

Returns number of bytes readReturns number of bytes read
 nbytes < 0  an error occurred.
 short counts (nbytes < sizeof(buf)) are possible and

are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
 perror(“read”);
 exit(1);
}

– 22 – 15-213, F’02

Questions
In Unix, using the In Unix, using the read()read() system call, if you read past system call, if you read past

the end of a file, what do you get?the end of a file, what do you get?
How do you know youHow do you know you’’ve gone past the end of the file?ve gone past the end of the file?

What if you make system calls and you donWhat if you make system calls and you don’’t includet include
syscalls.h or stdio.h?syscalls.h or stdio.h?
 Will the compiler give you an error message?
 Will your code be correct?

– 23 – 15-213, F’02

Seeking
lseek() sets the position in the file where the next read orlseek() sets the position in the file where the next read or

write will occur.write will occur.
#include <syscalls.h>
char buf[512];
int fd; /* file descriptor */
int offset, nbytes;

. . .
/* seek to offset in the file */
if (lseek(fd, offset, SEEK_SET) < 0){

/* handle error */
}
/* Then write from buf to file at that offset */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
 perror(“write”);
 exit(1);
}

– 24 – 15-213, F’02

Seeking
The last argument is a constant defined in syscalls.h.The last argument is a constant defined in syscalls.h.
Values:Values:

 SEEK_SET: The offset is set to offset bytes
 SEEK_CUR: The offset is set to its current location plus offset

bytes
 SEEK_END: The offset is set to the end of the file plus offset

bytes

What does SEEK_END do to the file?What does SEEK_END do to the file?
 Does it change the size of the file?
 What if you write out past the end of the file, leaving a gap?

 What is the size of the file after you write?
 What happens if you read within the gap?

– 25 – 15-213, F’02

Exercise
Suppose a file called Suppose a file called ““fpfilefpfile”” contains an array of contains an array of

floating point values (of type floating point values (of type floatfloat in C). in C).
Write a few lines of code to open the file, seek to theWrite a few lines of code to open the file, seek to the

fifth element of the array of floats, and read that onefifth element of the array of floats, and read that one
element into a variable in memory.element into a variable in memory.

Never mind about main() or #includeNever mind about main() or #include……
Just write a few lines out of the middle of an imaginaryJust write a few lines out of the middle of an imaginary

program.program.
DonDon’’t forget to check for errors!t forget to check for errors!

– 26 – 15-213, F’02

Open File Representation

Two descriptors referencing two distinct open disk files. Descriptor 1Two descriptors referencing two distinct open disk files. Descriptor 1
((stdoutstdout) points to terminal, and descriptor 4 points to open disk file.) points to terminal, and descriptor 4 points to open disk file.

fd 0
fd 1
fd 2
fd 3
fd 4

Per process
descriptor table

Global open
file table

Global
v-node table

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

– 27 – 15-213, F’02

File Sharing

Calling open twice with the same filename argumentCalling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Per process
descriptor table

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size
File type

File A

File B

– 28 – 15-213, F’02

File Sharing Between Processes
A child process inherits its parentA child process inherits its parent’’s open files. Here is the situations open files. Here is the situation

immediately after a forkimmediately after a fork

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor
tables

Global open
file table

Global
v-node table

File pos
refcnt=2

...

File pos
refcnt=2

...

Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size
File type

File access

...

File size
File type

File A

File B

– 29 – 15-213, F’02

Exercise
Suppose a disk file called Suppose a disk file called ““foobarfoobar”” contains 6 characters contains 6 characters

““foobarfoobar”” What is the output of this program? What is the output of this program?

#include <syscalls.h>
main()
{
 int fd; /* file descriptor */
 char c;

 fd = open(“foobar”, O_RDONLY, 0);
 if (fork() == 0){
 read(fd, &c, 1);
 } else {
 wait(NULL);
 read(fd, &c, 1);
 }
 printf(“c = %c\n”, c);
 exit(0);
}

– 30 – 15-213, F’02

Exercise
Suppose a disk file called Suppose a disk file called ““foobarfoobar”” contains 6 characters contains 6 characters

““foobarfoobar”” What is the output of this program? What is the output of this program?

#include <syscalls.h>
main()
{
 int fd; /* file descriptor */
 char c;

 fd = open(“foobar”, O_RDONLY, 0);
 read(fd, &c, 1);
 if (fork() == 0){
 printf(“c = %c\n”, c);
 } else {
 wait(NULL);
 read(fd, &c, 1);
 printf(“c = %c\n”, c);
 }
 exit(0);
}

– 31 – 15-213, F’02

 dup2 - duplicate an open file descriptor

 #include <unistd.h>

 int dup2(int fildes, int fildes2);

The dup2() function causes the file descriptor fildes2
to refer to the same file as fildes. The fildes argument
is a file descriptor referring to an open file, and fildes2
is a non-negative integer less than the current value
for the maximum number of open file descriptors
allowed the calling process. If fildes2 already refers
to an open file, not fildes, it is closed first.

•Do not panic. Continue breathing normally. We will explore
what this means

– 32 – 15-213, F’02

Exercise
Write some code to redirect the standard input to a fileWrite some code to redirect the standard input to a file

called called ““infile.infile.””
That is, the process executing this code will get itsThat is, the process executing this code will get its

standard input from standard input from ““infileinfile”” instead of wherever it instead of wherever it
came from before.came from before.

– 33 – 15-213, F’02

Sharing Files
Files are inherently shared.Files are inherently shared.

 If process x writes data to a file and process y has the file open,
then process y can read the data

Sharing can be avoidedSharing can be avoided
 locks on files
 file permissions

– 34 – 15-213, F’02

Sharing Files, continued
Suppose two processes write different data to the sameSuppose two processes write different data to the same

offset in the same file? What happens?offset in the same file? What happens?
This is perfectly legal.This is perfectly legal.

 It’s exactly analogous to shared memory.
 If you don’t want this to happen, it’s up to you (the

application programmer) to avoid it.

The data in a file is The data in a file is consistent consistent in this sense:in this sense:
All processes that read the file will see the same data

– 35 – 15-213, F’02

File Metadata
The The stat stat and and fstatfstat functions give us informationfunctions give us information

about files.about files.
/* Metadata returned by the stat and fstat functions */
struct stat {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection and file type */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
};

– 36 – 15-213, F’02

Example of Accessing File Metadata
/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

int main (int argc, char **argv)
{
 struct stat stat;
 char *type, *readok;

 Stat(argv[1], &stat);
 if (S_ISREG(stat.st_mode)) /* file type*/

type = "regular";
 else if (S_ISDIR(stat.st_mode))

type = "directory";
 else

type = "other";
 if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";
 else

readok = "no";

 printf("type: %s, read: %s\n", type, readok);
 exit(0);
}

bass> ./statcheck statcheck.c
type: regular, read: yes
bass> chmod 000 statcheck.c
bass> ./statcheck statcheck.c
type: regular, read: no

– 37 – 15-213, F’02

What about files that aren’t ascii strings?

HereHere’’s a program to copy a file containing ascii strings from stdins a program to copy a file containing ascii strings from stdin
to stdout:to stdout:
#include <stdio.h>
#define MAXLINE (32 * 1024)
#define MAXBUF (4096)
main()
{
int n;
char buf[MAXLINE];
while (fgets(buf, MAXLINE-1, stdin) != 0){
fputs(buf, stdout);

}
}

Exercise: Change the program to copy MAXBUF bytes at a time.Exercise: Change the program to copy MAXBUF bytes at a time.
Hint: these function declarations may come in handy:Hint: these function declarations may come in handy:
size_t fread(void *ptr, size_t size, size_t nobj, FILE *stream);size_t fread(void *ptr, size_t size, size_t nobj, FILE *stream);

size_t fwrite(void *ptr, size_t size, size_t nobj, FILE *stream);size_t fwrite(void *ptr, size_t size, size_t nobj, FILE *stream);

