
CS 201

A Whirlwind Tour of C
Programming

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

A brute simple Makefile
 all: sd test1 t1check test2 all: sd test1 t1check test2

sd: sd.csd: sd.c
cc -g -o sd sd.ccc -g -o sd sd.c

test1: test1.ctest1: test1.c
cc -o test1 test1.ccc -o test1 test1.c

test2: test2.ctest2: test2.c
cc -o test2 test2.ccc -o test2 test2.c

t1check: t1check.ct1check: t1check.c
cc -o t1check t1check.ccc -o t1check t1check.c

clean:clean:
rm sd test1 t1check test2 t1sortrm sd test1 t1check test2 t1sort

– 3 – 15-213, F’02

Some things about Makefiles
Call it makefile or Makefile (big or little M)Call it makefile or Makefile (big or little M)

 The “make” utility will use that by default

The first rule in the Makefile is used by default if youThe first rule in the Makefile is used by default if you
just say just say ““makemake”” with no arguments with no arguments

The second line of each rule (the command) must startThe second line of each rule (the command) must start
with a tab, not spaces!with a tab, not spaces!

– 4 – 15-213, F’02

A slightly more complex makefile
 CC = gccCC = gcc

CFLAGS = -Wall -O2CFLAGS = -Wall -O2
LIBS = -lmLIBS = -lm

OBJS = driver.o kernels.o fcyc.o clock.oOBJS = driver.o kernels.o fcyc.o clock.o

all: driverall: driver

driver: $(OBJS) config.h defs.h fcyc.hdriver: $(OBJS) config.h defs.h fcyc.h
$(CC) $(CFLAGS) $(OBJS) $(LIBS) -o driver$(CC) $(CFLAGS) $(OBJS) $(LIBS) -o driver

 driver.o: driver.c defs.hdriver.o: driver.c defs.h

 kernels.o: kernels.c ... h kernels.o: kernels.c ... h

 fcyc.o: fcyc.c fcyc.o: fcyc.c

 clock.o: clock.c clock.o: clock.c

– 5 – 15-213, F’02

A brute simple shell script

 A plain text file containing commandsA plain text file containing commands
Known as a batch file in some O. S.Known as a batch file in some O. S.’’ss

 Make sure the file has Make sure the file has ““executableexecutable”” permission permission
 Invoke it by name, just like a binary programInvoke it by name, just like a binary program

 test1 test1
sd t1file t1sortsd t1file t1sort
t1checkt1check
echoecho
test2test2
sd t2file t1sortsd t2file t1sort
t1checkt1check
echoecho

– 6 – 15-213, F’02

argc and argv
main has two arguments:main has two arguments:
 main(int argc, char *argv[]) main(int argc, char *argv[])
 argc tells how many command line arguments thereargc tells how many command line arguments there

are, including the command itselfare, including the command itself
 argv is a pointer to an array of pointers to charactersargv is a pointer to an array of pointers to characters
 Example: find . Example: find . ––printprint

 argc = 3
 argv[0] = “find”
 argv[1] = “.”
 argv[2] = “-print”

– 7 – 15-213, F’02

The C preprocessor
bass> gcc -O2 -v -o p m.c a.c
cpp [args] m.c /tmp/cca07630.i
cc1 /tmp/cca07630.i m.c -O2 [args] -o /tmp/cca07630.s
as [args] -o /tmp/cca076301.o /tmp/cca07630.s
<similar process for a.c>
ld -o p [system obj files] /tmp/cca076301.o

/tmp/cca076302.o
bass>

 cc or gcc, the compiler driver, invokes a bunch of thingscc or gcc, the compiler driver, invokes a bunch of things
 The first one is cpp, the preprocessorThe first one is cpp, the preprocessor
 After that is cc1, the translatorAfter that is cc1, the translator

 cpp converts the C source file to another C source filecpp converts the C source file to another C source file
 expands #defines, #includes, etc.expands #defines, #includes, etc.

– 8 – 15-213, F’02

Things you can tell the preprocessor
Included files:Included files:

#include <foo.h>

#include “bar.h”

Defined constants:Defined constants:
#define MAXVAL 40000000

Macros:Macros:
#define MIN(x,y) ((x)<(y) ? (x):(y))

#define RIDX(i, j, n) ((i) * (n) + (j))

Conditional compilation:Conditional compilation:
#ifdef …

#if defined(…)

#endif

– 9 – 15-213, F’02

What do you use conditional compilation for?

 Debug print statementsDebug print statements
 By defining or undefining one constant, you can include or

exclude many scattered pieces of code

 Code you think you may need againCode you think you may need again
 #ifdefs are more readable than commenting code out

 PortabilityPortability
 To multiple operating systems
 To multiple processors

 Compilers have “built in” constants defined
 #if defined(__i386__) || defined(WIN32) || …

 To different compilers for the same processor

– 10 – 15-213, F’02

Pointers
Pointers can point to any data type, includingPointers can point to any data type, including

structuresstructures
pixel foo[32000]; // An array of pixelspixel foo[32000]; // An array of pixels

// p is a pointer to a pixel, initialized to foo// p is a pointer to a pixel, initialized to foo
pixel *p = foo;pixel *p = foo;

&(foo[99]) is the same thing as (p+99)&(foo[99]) is the same thing as (p+99)
You can use subscripts with pointers
Incrementing a pointer adds the increment times the
size of the data type that it points to.

foo[99] is the same as *(p+99) or p[99]foo[99] is the same as *(p+99) or p[99]

foo[0].blue is the same thing as p->bluefoo[0].blue is the same thing as p->blue

foo[99].red is the same thing as (p+99)->redfoo[99].red is the same thing as (p+99)->red

– 11 – 15-213, F’02

Pointer example
Following a linked listFollowing a linked list

struct zilch listhead;struct zilch listhead;

struct zilch *p = listhead;struct zilch *p = listhead;

while (p != NULL) {while (p != NULL) {

... // Do stuff to *p... // Do stuff to *p

p = p->next;p = p->next;

}}

– 12 – 15-213, F’02

What’s the problem with this?
int zarray[34000];int zarray[34000];

char *zp = zarray;char *zp = zarray;

int i;int i;

for(i=0; i<34000; i++){for(i=0; i<34000; i++){

*zp++ = i;*zp++ = i;

}}

– 13 – 15-213, F’02

 C pointer declarations
int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p)[13] p is a pointer to an array[13] of int

int *f() f is a function returning a pointer to int

int (*f)() f is a pointer to a function returning int

int (*(*f())[13])() f is a function returning ptr to an array[13]
 of pointers to functions returning int

int (*(*x[3])())[5] x is an array[3] of pointers to functions
returning pointers to array[5] of ints

