
CS 201

 Cache Micro-architecture

Gerson Robboy
Portland State University

Topics
 Generic cache memory organization
 Direct mapped caches
 Set associative caches
 What about writing to memory?
 Multiple processors sharing memory

– 2 – 15-213, F’02

locality - design goals
spatial locality - if you fetch data/instruction X, Xi is

likely to be fetched next
true for code in functions
true for data in arrays
we want to load more than X - we want other items
nearby (register will only take X) - call this block
the cache line

temporal locality - if you fetch instruction X now, you
may do it again soon
true if code is in a loop

– 3 – 15-213, F’02

Cache Memories
Cache memories are small, fast SRAM-based memories

managed automatically in hardware.
 Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main
memory.

Typical bus structure:

main
memory

I/O
bridgebus interfaceL2 cache

ALU

register file
CPU chip

cache bus system bus memory bus

L1
cache

– 4 – 15-213, F’02

On a cache miss…
Data is gotten from memory, stored in both L1 and L2.
The next access will be an L1 hit.
If evicted from L1, an L2 hit is still likely.

This is true for both reads and writes.

– 5 – 15-213, F’02

On a store, in case of cache miss…
 Pre-read the cache line from memory into both L1

and L2 caches.
 Store the data value into L1.
 The data is written through to L2.
Written back to memory later.
Subsequent stores may write more data into the same

line in cache.

– 6 – 15-213, F’02

The problem with cache design
Given an instruction: movl <address>, %<reg>
Search the L1 cache, find the address, and move the

data from L1 to register
 All in one clock cycle

In case of an L1 miss and L2 hit:
 Search L1 cache, find it’s not there.
 Search the L2 cache, find the address, and move the data

from L2 to register
 Also replicate the cache line in L1
 In at most 10 clock cycles

You need more than just fast SRAM to do that.

– 7 – 15-213, F’02

General Organization of a Cache

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

– 8 – 15-213, F’02

Addressing Caches
t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

note: tag in set may
be different

– 9 – 15-213, F’02

therefore
1. we have tag, set, offset (break memory 32 bits up

into 3 parts), set should give us the set,
2. the offset gives us a specific word (register) in a

block (set of words)
3. tag must match (all parts must match actually). In

some cases we may have multiple “lines” in a set.

– 10 – 15-213, F’02

Exercise
For each cache in the table, m=number of address bits,

C=cache size in bytes, B=block size, and E=lines/set.
Determine the number of cache sets (S), tag bits (t), set

index bits (s), and block offset bits (b).

3232102432

48102432

14102432

bstSEBCm

– 11 – 15-213, F’02

Direct-Mapped Cache
Simplest kind of cache
Characterized by exactly one line per set.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

– 12 – 15-213, F’02

parking lot analogy (thanks to umd)
• assume 1000 parking lot spaces
• each space numbered from 000..999
• your parking spot based on 1st 3 digits of SSN
• there can only be one space
• simple to find - however there may be many

collisions
• not very efficient
• drawbacks:
• poor hash function
• don’t use slots very well (don’t use a free slot)

– 13 – 15-213, F’02

Accessing Direct-Mapped Caches
Set selection

 Use the set index bits to determine the set of interest.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0 0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block

– 14 – 15-213, F’02

Accessing Direct-Mapped Caches
Line matching and word selection

 Line matching: Find a valid line in the selected set with a
matching tag (actually look up set, tag makes sure it is right)

 Word selection: Then extract the word

1

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

(3) If (1) and (2), then
cache hit,

and block offset
selects

starting byte.

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the cache

line must match the
tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6

– 15 – 15-213, F’02

Direct-Mapped Cache Simulation
m=4 bits/address, M=16 byte address space,
B=2 bytes/block, S=4 sets, E=1 entry/set

Address trace (reads):
0 [00002], 1 [00012], 13 [11012], 8 [10002], 0 [00002]

x
t=1 s=2 b=1

xx x

1 0 m[1] m[0]
v tag data

0 [00002] (miss)

(1)
1 0 m[1] m[0]
v tag data

1 1 m[13] m[12]

13 [11012] (miss)

(3)

1 1 m[9] m[8]
v tag data

8 [10002] (miss)

(4)
1 0 m[1] m[0]
v tag data

1 1 m[13] m[12]

0 [00002] (miss)

(5)

0 M[0-1]1

1 M[12-13]1

1 M[8-9]1

1 M[12-13]1

0 M[0-1]1

1 M[12-13]1

0 M[0-1]1

– 16 – 15-213, F’02

Why Use Middle Bits as Index?

High-Order Bit Indexing
 Adjacent memory lines would

map to same cache entry
 Poor use of spatial locality

Middle-Order Bit Indexing
 Consecutive memory lines map

to different cache lines
 Can hold C-byte region of

address space in cache at one
time

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

– 17 – 15-213, F’02

Exercise
m=4 bits/address, M=16 byte address space,
B=2 bytes/block, S=4 sets, E=1 entry/set

Address trace (reads):
4 [01002], 1 [00012], 13 [11012], 8 [10002], 0 [00002],
5 [0101]

Draw a chart showing the cache misses and hits.

What is the problem with one entry per set?

x
t=1 s=2 b=1

xx x

– 18 – 15-213, F’02

Set Associative Caches
Characterized by more than one line per set

 This example is a two-way set associative cache

valid tag
set 0: E=2 lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

– 19 – 15-213, F’02

parking lot analogy for N-way set
1000 parking spaces
2-digit assigned number. 00-99
10 slots numbered 00, 01, 02, … 99
thus 10 possible places to park
in reality you might be assigned lot A, with 100 places

to park, but you can’t park in lot B
point: odds are higher that you can find an acceptable

slot nearby

– 20 – 15-213, F’02

Accessing Set Associative Caches
Set selection

 identical to direct-mapped cache

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block

– 21 – 15-213, F’02

Accessing Set Associative Caches
Line matching and word selection

 must compare the tag in each valid line in the selected set.

1 0110 w3w0 w1 w2

1 1001

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

=1? (1) The valid bit must be set.

= ?
(2) The tag bits in one

of the cache lines must
match the tag bits in

the address

(3) If (1) and (2), then
cache hit, and

 block offset selects
starting byte.

30 1 2 74 5 6

– 22 – 15-213, F’02

Exercise
m=4 bits/address, M=16 byte address space,
B=2 bytes/block, S=2 sets, E=2 entries/set

Address trace (reads):
4 [01002], 2 [00102], 13 [11012], 3 [00112], 5 [0101],
0 [0000]

Draw a chart showing the cache misses and hits.

xx
t=2 s=1 b=1

x x

– 23 – 15-213, F’02

Associative Caches
A cache with N lines per set is called an N-way set

associative cache
For example, a typical microprocessor might have a 4

way set associative cache

– 24 – 15-213, F’02

Exercise
A processor has 32 bit addresses. The L2 cache is 256

K-bytes in size, 8-way set associative, with a block
size of 64 bytes.

How many block offset bits are there, how many set
index bits, and how many tag bits?

Given an address 0x30004a5c
What is the block offset, what is the set index, and what

is the tag?

– 25 – 15-213, F’02

Fully associative caches
A cache with exactly one set is called a fully associative

cache
 All lines in the cache are in that one set
 Each line is uniquely identified by the tag bits alone

The problem with fully associative caches
 There are many cache lines in one set
 The CPU must find a matching tag very fast (less than one

clock cycle)
 You need logic to compare all the tags in parallel
 This can get expensive

– 26 – 15-213, F’02

parking lot analogy
1. more parking permits than slots
2. student can park in any space
3. in reality hardware has to do a parallel search based

on the valid bit AND the tag

– 27 – 15-213, F’02

Review
A direct mapped cache has one line per set

 There are as many sets as there are cache lines in the cache
 Likelihood of contention

 “conflict misses”
 Cache entries get evicted when the cache isn’t full

A fully associative cache has exactly one set
 All lines in the cache belong to that one set
 Problem of quick search for a matching tag

A set associative cache has several lines per set
 An N way associative cache has N lines per set

– 28 – 15-213, F’02

What about writing to memory?
Written data is also cached.
On a cache miss, pre-read the cache line into the cache.
Then write the data into the cache line.
Subsequent reads or writes will have a cache hit.

– 29 – 15-213, F’02

Writing to memory
How does the data get from the cache to memory?
Write-through cache: Data is written through to

memory at the time of the “store” instruction
Write-back cache: New data is stored in the cache and

written to memory later.
What is the problem with a write-through cache?
What is the problem with a write-back cache?

may have 2 write data twice (evict dirty and write
new)

With write-back, how does the CPU decide when to
write the data to memory?

– 30 – 15-213, F’02

What about multi-processors?
What’s the problem with write-back caches?

main
memory

I/O
bridgebus interfaceL2 cache

ALU
register file

cache bus memory bus
L1

cache

bus interfaceL2 cache

ALU

register file

cache bus

system bus

L1
cache

– 31 – 15-213, F’02

design rule of thumb for caches
if you double the associativity, that is about the same

as doubling the cache size itself
so 2-way > direct
4-way > 2-way
beyond 4-way, not so good

