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An Example Memory Hierarchy
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Why Cache-Friendly Code is
Important

millionsmillionsDiskDisk

1001004-KB  pages4-KB  pagesMain MemoryMain Memory

101032 bytes32 bytesL2 CacheL2 Cache

1132 bytes32 bytesL1 CacheL1 Cache

004 bytes4 bytesRegistersRegisters

Latency (cpu cycles)Latency (cpu cycles)Size of item (bytes)Size of item (bytes)Cache typeCache type

On ia32 processor, with few registers, even localOn ia32 processor, with few registers, even local
variables are likely to spill to memory.variables are likely to spill to memory.
We want them in cache!We want them in cache!
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Just what does a cache do?
The cache stores memory in units or The cache stores memory in units or cache linescache lines

 Fixed length chunks,  hardware dependent
 For our example, let’s say cache lines are 32 bytes
 Aligned on a cache-line (32 byte) boundary

When the CPU accesses a memory address (store orWhen the CPU accesses a memory address (store or
load), the cache line containing that address isload), the cache line containing that address is
pulled into the cachepulled into the cache
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Examples
Suppose a certain processor has a 32-byte cache lineSuppose a certain processor has a 32-byte cache line

size.size.
You access address 0x3a40.  What addresses areYou access address 0x3a40.  What addresses are

pulled into the cache?pulled into the cache?
You access address 0x3a94.  What addresses areYou access address 0x3a94.  What addresses are

pulled into the cache?pulled into the cache?
Next you access 0x3a48.  What happens?Next you access 0x3a48.  What happens?
You access 4 32-bit words sequentially, from 0x8000 toYou access 4 32-bit words sequentially, from 0x8000 to

0x801c0x801c
 How many cache misses and how many cache hits?
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Locality
Principle of Locality:Principle of Locality:

 Programs tend to reuse data and instructions near those
they have used recently, or that were recently referenced
themselves.

 Temporal locality:  Recently referenced items are likely to be
referenced in the near future.

 Spatial locality:  Items with nearby addresses tend to be
referenced close together in time.

Locality Example:
• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:
• Instructions

– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality
Temporal locality

Temporal locality
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Locality Example
Claim:Claim: Being able to look at code and get a qualitative Being able to look at code and get a qualitative

sense of its locality is a key skill for a professionalsense of its locality is a key skill for a professional
programmer.programmer.

Question:Question: Does this function have good locality? Does this function have good locality?
 Spatial, temporal, both, or neither?

int sumarrayrows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum
}
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Locality Example
Question:Question: Does this function have good locality? Does this function have good locality?

 Spatial, temporal, both, or neither?

int sumarraycols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum
}
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Locality Example
Question:Question: Can you permute the loops so that the Can you permute the loops so that the

function scans the 3-d array function scans the 3-d array a[]a[] with a stride-1 with a stride-1
reference pattern (and thus has good spatialreference pattern (and thus has good spatial
locality)?locality)?

int sumarray3d(int a[M][N][N])
{
    int i, j, k, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            for (k = 0; k < N; k++)
                sum += a[k][i][j];
    return sum
}
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Why does traversing a matrix with stride 1 give youWhy does traversing a matrix with stride 1 give you
good spatial locality?good spatial locality?

Why do strides other than 1 give you bad spatialWhy do strides other than 1 give you bad spatial
locality?locality?
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Writing Cache Friendly Code
Repeated references to variables are good (temporalRepeated references to variables are good (temporal

locality)locality)
Stride-1 reference patterns are good (spatial locality)Stride-1 reference patterns are good (spatial locality)
Examples:Examples:

 cold cache, 4-byte words, 8-word cache blocks

int sumarrayrows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}

int sumarraycols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}

Miss rate = Miss rate = 1/8 = 12.5% 100%
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The Memory Mountain
Read throughput (read bandwidth)Read throughput (read bandwidth)

 Number of bytes read from memory per second (MB/s)

Memory mountainMemory mountain
 Measured read throughput as a function of spatial and

temporal locality.
 Compact way to characterize memory system performance.
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Memory Mountain Test Function

/* The test function */
void test(int elems, int stride) {
    int i, result = 0; 
    volatile int sink; 

    for (i = 0; i < elems; i += stride)
result += data[i];

    sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
    double cycles;
    int elems = size / sizeof(int); 

    test(elems, stride);                     /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0);  /* call test(elems,stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
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Memory Mountain Main Routine
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10)  /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23)  /* ... up to 8 MB */
#define MAXSTRIDE 16        /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int) 

int data[MAXELEMS];         /* The array we'll be traversing */

int main()
{
    int size;        /* Working set size (in bytes) */
    int stride;      /* Stride (in array elements) */
    double Mhz;      /* Clock frequency */

    init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
    Mhz = mhz(0);              /* Estimate the clock frequency */
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {

for (stride = 1; stride <= MAXSTRIDE; stride++) 
    printf("%.1f\t", run(size, stride, Mhz));
printf("\n");

    }
    exit(0);
}
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The Memory Mountain
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Ridges of Temporal Locality
Slice through the memory mountain with stride=1Slice through the memory mountain with stride=1

 illuminates read throughputs of different caches and
memory
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A Slope of Spatial Locality
Slice through memory mountain with size=256KBSlice through memory mountain with size=256KB

 shows cache block size.
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Matrix Multiplication Example

Major Cache Effects to ConsiderMajor Cache Effects to Consider
 Total cache size

 Exploit temporal locality and keep the working set small (e.g., by using
blocking)

 Block size
 Exploit spatial locality

Description:Description:
 Multiply N x N matrices
 O(N3) total operations
 Accesses

 N reads per source element
 N values summed per destination

» but may be able to hold in register

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

Variable sum
held in register
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Miss Rate Analysis for Matrix Multiply
Assume:Assume:

 Line size = 32B (big enough for 4 64-bit words)
 Matrix dimension (N) is very large

 Approximate 1/N as 0.0
 Cache is not big enough to hold multiple rows

Analysis Method:Analysis Method:
 Look at access pattern of inner loop
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Layout of C Arrays in Memory
(review)
C arrays allocated in row-major orderC arrays allocated in row-major order

 each row in contiguous memory locations

Stepping through columns in one row:Stepping through columns in one row:
 for (i = 0; i < N; i++)

sum += a[0][i];

 accesses successive elements
 if block size (B) > 4 bytes, exploit spatial locality

 compulsory miss rate = 4 bytes / B

Stepping through rows in one column:Stepping through rows in one column:
 for (i = 0; i < n; i++)

sum += a[i][0];

 accesses distant elements
 no spatial locality!

 compulsory miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per Inner Loop Iteration:Misses per Inner Loop Iteration:
A B C

0.25 1.0 0.0
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per Inner Loop Iteration:Misses per Inner Loop Iteration:
A B C

0.25 1.0 0.0
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
  }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per Inner Loop Iteration:Misses per Inner Loop Iteration:
A B C

0.0 0.25 0.25
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
  }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per Inner Loop Iteration:Misses per Inner Loop Iteration:
A B C

0.0 0.25 0.25
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Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column -
wise

Column-
wise

Fixed

Misses per Inner Loop Iteration:Misses per Inner Loop Iteration:
A B C

1.0 0.0 1.0
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Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per Inner Loop Iteration:Misses per Inner Loop Iteration:
A B C

1.0 0.0 1.0
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Summary of Matrix Multiplication

 for (i=0; i<n; i++)  {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}

for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0
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Pentium Matrix Multiply Performance
Miss rates are helpful but not perfect predictors.Miss rates are helpful but not perfect predictors.

 Code scheduling matters, too.
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Improving Temporal Locality by
Blocking
Example: Blocked matrix multiplicationExample: Blocked matrix multiplication

 “block” (in this context) does not mean “cache block”.
 Instead, it mean a sub-block within the matrix.
 Example: N = 8; sub-block size = 4

C11  =  A11B11 + A12B21           C12  =  A11B12 + A12B22

C21  =  A21B11 + A22B21           C22  =  A21B12 + A22B22

A11   A12

A21   A22

B11   B12

B21   B22
X = 

C11   C12

C21   C22

Key idea: Sub-blocks (i.e., Axy) can be treated just like
scalars.
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Blocked Matrix Multiply (bijk)
for (jj=0; jj<n; jj+=bsize) {
  for (i=0; i<n; i++)
    for (j=jj; j < min(jj+bsize,n); j++)
      c[i][j] = 0.0;
  for (kk=0; kk<n; kk+=bsize) {
    for (i=0; i<n; i++) {
      for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
          sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
      }
    }
  }
}
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Blocked Matrix Multiply Analysis
 Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize

X bsize block of B and accumulates into 1 X bsize sliver of C
 Loop over i steps through n row slivers of A & C, using same B

A B C

block reused n
times in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jjjj

for (i=0; i<n; i++) {
      for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
          sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
      }

Innermost
Loop Pair
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Let’s try to see what this does
for (jj=0; jj<n; jj+=bsize) {// for each bsize block
  //skip zeroing C for now
  for (kk=0; kk<n; kk+=bsize) {
    for (i=0; i<n; i++) {  // for each row of A
      // for each column of the block of B
      for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        // For each element of the sliver of A/column of B
        for (k=kk; k < min(kk+bsize,n); k++) {
          sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
      }
    }
  }
}

A B C

i i
kk

kk jjjj
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So here’s the point of blocking
 Use a block size smaller than the size of the CPU cache
 The row sliver and the block in B are re-used many times in a

row.
 They are in cache after the first time they are used.
 Then go on to another small block, get it in the cache.
 If you do it in the right order, you multiply all the horizontal

slivers in A times one block in B, before going on to another
block in B.

A B C

block reused n
times in succession

row sliver accessed
bsize times

Update successive
elements of sliver

i i
kk

kk jjjj
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Pentium Blocked Matrix
Multiply Performance
Blocking (Blocking (bijkbijk and  and bikjbikj) improves performance by a) improves performance by a

factor of two over unblocked versions (factor of two over unblocked versions (ijk ijk and and jikjik))
 relatively insensitive to array size.
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Concluding Observations
Programmer can optimize for cache performanceProgrammer can optimize for cache performance

 How data structures are organized
 How data are accessed

 Nested loop structure
 Blocking is a general technique

All systems favor All systems favor ““cache friendly codecache friendly code””
 Getting absolute optimum performance is very platform

specific
 Cache sizes, line sizes, associativities, etc.

 Can get most of the advantage with generic code
 Keep working set reasonably small (temporal locality)
 Use small strides (spatial locality)


