
CS 201

Using External, Local,
and Dynamic Variables

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

In C we have 3 general ways of declaring or
creating data
ExternalExternal or or statically allocatedstatically allocated variables variables

 Declared outside a function.

LocalLocal or or temporarytemporary variables variables
 Declared inside a function

Dynamically allocatedDynamically allocated memory memory
 using the malloc family of functions

– 3 – 15-213, F’02

External or “statically allocated”
variables
Declared outside of any functionDeclared outside of any function
Fixed size and declared data typeFixed size and declared data type

 Can be structures, arrays, arrays of structures, …
 No limit on the size

Statically allocated by the loaderStatically allocated by the loader
Persists for the duration of the processPersists for the duration of the process
Two kinds:Two kinds:

 global – scope is the entire program
 Duplicate names in separate files is a bug

 static – scope is the C source file

– 4 – 15-213, F’02

Local or temporary variables
Declared inside a functionDeclared inside a function
Fixed size and declared data typeFixed size and declared data type

 Can be structures, arrays, arrays of structures, …
 No limit on the size

Created on the stack when a function is calledCreated on the stack when a function is called
Persists until that function returns, then disappearsPersists until that function returns, then disappears
The scope is within that function onlyThe scope is within that function only

 Duplicate names in separate functions are distinct

Function arguments are a variation of thisFunction arguments are a variation of this
 Also temporary, and also have limited scope

– 5 – 15-213, F’02

Dynamically allocated memory
Allocated at run time using malloc, calloc, Allocated at run time using malloc, calloc, ……
Variable size and no data typeVariable size and no data type
Persists until it is explicitly freedPersists until it is explicitly freed
It has no name, no data type, and no scope.It has no name, no data type, and no scope.

 Depends on pointers to access it.
 The data type depends on the type of the pointer.

– 6 – 15-213, F’02

Temporary variables are our friends
Limited scope is good for structured programmingLimited scope is good for structured programming

 hide information
 avoid name-space conflicts and side effects
 modularity makes the program easier to understand

Automatic garbage collectionAutomatic garbage collection
 conserves memory
 no need to keep track of when and where to free allocated

memory

Use temporary variables wherever possibleUse temporary variables wherever possible
 More than that, design the program in order to use them
 When possible, pass information using function arguments

rather than external data

– 7 – 15-213, F’02

External variables
When you need data to persist beyond one function.When you need data to persist beyond one function.
When an object, such as a buffer, will be usedWhen an object, such as a buffer, will be used

repeatedly and it might as well just be declaredrepeatedly and it might as well just be declared
externally once.externally once.

When data is needed in many different functions, andWhen data is needed in many different functions, and
always passing it as an argument adds morealways passing it as an argument adds more
complexity than itcomplexity than it’’s worth.s worth.
 Especially constant data that will never be modified

Whenever possible, use Whenever possible, use ““staticstatic”” variables to limit the variables to limit the
scope.scope.
 Design the source file structure to make this possible.

– 8 – 15-213, F’02

Dynamic Allocation
When you donWhen you don’’t know in advance how many things yout know in advance how many things you

will need.will need.
When you donWhen you don’’t know in advance how big it will be.t know in advance how big it will be.
When youWhen you’’re going to use a big object for a while, butre going to use a big object for a while, but

not forevernot forever
 Can free it to conserve memory

– 9 – 15-213, F’02

Reasons to avoid dynamic allocation
Pointer manipulation is prone to bugsPointer manipulation is prone to bugs

 Particularly hard ones to debug!

Lack of declared data type is also prone to bugsLack of declared data type is also prone to bugs
Added complexityAdded complexity

 Keeping track of what’s allocated and when to free it
 Memory leaks
 Avoiding freeing things twice
 Avoiding losing the pointer to an allocated object

– 10 – 15-213, F’02

Example
A program like a shell has a main loop that looksA program like a shell has a main loop that looks

something like thissomething like this
main_loop(.. .)
{
 while(. . .){
 get_command();
 parse_command();
 execute_command();
}

We need a buffer for the command lines. We don’t
know the length of each command until after we
input it. What kind of data object should the buffer be?
Where should it be declared?

– 11 – 15-213, F’02

Continuing with the shell example:

The functionThe function
 char **parse_command(char *buf) char **parse_command(char *buf)
starts with a buffer full of text and returns an array ofstarts with a buffer full of text and returns an array of

pointers to individual words in the text (pointers to individual words in the text (tokenstokens).).

How and where do we declare the array of pointers toHow and where do we declare the array of pointers to
tokens? What about the content of the tokenstokens? What about the content of the tokens
themselves, that is, the actual strings?themselves, that is, the actual strings?

– 12 – 15-213, F’02

Practice problem
Write the functionWrite the function
 char **parse_command(char *buf) char **parse_command(char *buf)
Declare the variables you need.Declare the variables you need.
Make these simplifying assumptions:Make these simplifying assumptions:

 The buffer contains words separated by a single space
 The buffer contains at most 10 words
 We don’t need to preserve the original contents of the buffer,

and it can be modified.

– 13 – 15-213, F’02

Example
A program is going to process some body of data andA program is going to process some body of data and

generate a list of data structures.generate a list of data structures.
We know what the data structure looks like, but weWe know what the data structure looks like, but we

dondon’’t know how many of them there will be. We willt know how many of them there will be. We will
organize them in a linked list.organize them in a linked list.

What kind of data object do we use and where do weWhat kind of data object do we use and where do we
declare it?declare it?

– 14 – 15-213, F’02

Example
One function of a program is going to process someOne function of a program is going to process some

body of data and generate a list of data structures.body of data and generate a list of data structures.
We know what the data structure looks like, but weWe know what the data structure looks like, but we

dondon’’t know how many of them there will be. Oncet know how many of them there will be. Once
this function has generated the list of structures, itthis function has generated the list of structures, it
can generate a result and then the list of structurescan generate a result and then the list of structures
is no longer needed.is no longer needed.

What kind of data object do we use?What kind of data object do we use?

– 15 – 15-213, F’02

A function does calculations and returns a floatingA function does calculations and returns a floating
point value. What kind of thing should the variablepoint value. What kind of thing should the variable
be in which the value is returned?be in which the value is returned?

A function does calculations and returns a pointer to anA function does calculations and returns a pointer to an
array of floating point values. What kind of thingarray of floating point values. What kind of thing
should the variable be in which the return value (theshould the variable be in which the return value (the
pointer) is returned?pointer) is returned?

– 16 – 15-213, F’02

Practice Problem
Suppose a program needs to read lines of text fromSuppose a program needs to read lines of text from

stdin, with no limit on how long a line may be.stdin, with no limit on how long a line may be.
Write a design for a function read_line, specifyingWrite a design for a function read_line, specifying

what data objects it uses.what data objects it uses.
Write code for this function.Write code for this function.

– 17 – 15-213, F’02

A certain function does calculations, generates an arrayA certain function does calculations, generates an array
of values, and returns a pointer to that array. Theof values, and returns a pointer to that array. The
size of the array is constant. What kind of thingsize of the array is constant. What kind of thing
should the array be?should the array be?

A certain function does calculations, generates an arrayA certain function does calculations, generates an array
of structures, and returns a pointer to that array. Theof structures, and returns a pointer to that array. The
size of the array is variable, and is known when thissize of the array is variable, and is known when this
function executes. What kind of thing should thefunction executes. What kind of thing should the
array be?array be?

– 18 – 15-213, F’02

A certain function does calculations, generates an arrayA certain function does calculations, generates an array
of values, and returns a pointer to that array. Theof values, and returns a pointer to that array. The
size of the array is variable and depends on inputsize of the array is variable and depends on input
data. That is, the number of elements will be knowndata. That is, the number of elements will be known
only when the calculation is done. What kind ofonly when the calculation is done. What kind of
thing should the array be?thing should the array be?

– 19 – 15-213, F’02

In the previous example, suppose we have an upperIn the previous example, suppose we have an upper
bound on the size of the array. Suppose we mallocbound on the size of the array. Suppose we malloc
the upper bound, even though itthe upper bound, even though it’’s way more memorys way more memory
than wethan we’’re likely to need.re likely to need.

Is this a bad thing to do? Does this hog memory thatIs this a bad thing to do? Does this hog memory that
other processes might use?other processes might use?

– 20 – 15-213, F’02

In the previous example, suppose there is no upperIn the previous example, suppose there is no upper
bound on the number of elements we may generate.bound on the number of elements we may generate.

What might be a better way to organize the data than inWhat might be a better way to organize the data than in
an array?an array?

– 21 – 15-213, F’02

HereHere’’s the beginning of a function that builds a binary tree of pointers tos the beginning of a function that builds a binary tree of pointers to
strings, sorting them into alphabetical order without copying strings.strings, sorting them into alphabetical order without copying strings.

typedef struct node Node;
struct node{

char *string;
Node *left;
Node *right;

};
Node *Head = 0;
int insert(Node **node, char *string)
{
 int i;
 Node *n;

 if(*node == NULL){
 *node = (Node *)calloc(1, sizeof(Node));

Finish writing the function. The return value will be:Finish writing the function. The return value will be:
1 if the string was inserted in the tree
0 if the string was a duplicate, already in the tree
-1 on error

examples/insert.c

– 22 – 15-213, F’02

Review Problem
In one of our homework assignments, we had to pack twoIn one of our homework assignments, we had to pack two

unsigned variables into a u_int64_t. Write code for thisunsigned variables into a u_int64_t. Write code for this
function:function:

u_int64_t u_to_ll(unsigned hi, unsigned lo);u_int64_t u_to_ll(unsigned hi, unsigned lo);

Write three versions of the function:Write three versions of the function:
 Using a union
 Using a pointer and no union
 Using casts and shifts but no pointers or union

