
CS 201

 The Unix System
Interface

Gerson Robboy
Portland State University

– 2 – 15-213, F’02

System Calls
A system call is a request to the operating system for aA system call is a request to the operating system for a

service.service.
 typically made via a trap into the kernel

The UNIX system call interfaces are defined in section 2The UNIX system call interfaces are defined in section 2
of the man pagesof the man pages
 “man 2 intro” shows how they are actually called

These are the These are the ““realreal”” UNIX services, everything else is UNIX services, everything else is
 An abstraction
 Built on top of them
 See unistd.h in Linux kernel tree for details

– 3 – 15-213, F’02

System calls for process control
WeWe’’ve already seen these:ve already seen these:
forkfork
execl, execv, execl, execv, ……
signal, sigaction, signal, sigaction, ……
wait, waitpidwait, waitpid
alarmalarm
sleepsleep
exitexit

– 4 – 15-213, F’02

File Manipulation
open open –– get a file descriptor for named file get a file descriptor for named file
close close –– free a file descriptor free a file descriptor
read read –– readread data from a file descriptor data from a file descriptor
write write –– writewrite data to a file descriptor data to a file descriptor
stat stat –– get file meta data get file meta data
dup2 dup2 –– duplicate a descriptor duplicate a descriptor
lseeklseek –– change the current offset change the current offset
creatcreat –– create/rewrite a named file create/rewrite a named file
unlink unlink –– remove a directory entry remove a directory entry
chmodchmod: change permissions associated with file: change permissions associated with file
fcntlfcntl: file control: file control
mmapmmap: map file contents: map file contents

We’ve seen
these in action
already

We’ll look at
these

– 5 – 15-213, F’02

creat System Call
creatcreat is used to create new files is used to create new files

 int creat(const char *path, mode_t mode);
 Equivalent to

 open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

If file already exists, truncates to zeroIf file already exists, truncates to zero

 #include <fcntl.h>
 ...
 int fd;
 mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
 char *filename = "/tmp/file";
 ...
 fd = creat(filename, mode);
 ...

– 6 – 15-213, F’02

unlink System Call
Removes a directory entryRemoves a directory entry

 int unlink(const char *path);

The unlink() function removes a link to a file.The unlink() function removes a link to a file.
 If path names a symbolic link, unlink() removes the

symbolic link named by path

– 7 – 15-213, F’02

Exercise

Write a simple “remove” utility that removes a single
file. The program must take one command argument,
the name of the file to remove. The program must
check to make sure there is exactly one argument,
then unlink the file and check to see whether it was
successfully unlinked.

– 8 – 15-213, F’02

chmod System Call

Change access permission mode of a fileChange access permission mode of a file
 int chmod(const char *path, mode_t mode);
 int fchmod(int fildes, mode_t mode);

The effective user ID of the process must match theThe effective user ID of the process must match the
owner of the file (or be 0)owner of the file (or be 0)

Mode is constructed by the bitwise OR operation ofMode is constructed by the bitwise OR operation of
the access permission bitsthe access permission bits
 mode_t mode = S_ISUID | S_IRWXU | S_IRWXG;

– 9 – 15-213, F’02

chmod Example
int
main(int argc, char *argv[])
{
 int rc;
 mode_t newMode = S_IRUSR | S_IRGRP;

 if (argc != 2) {
 fprintf(stderr, "Usage: %s <file>\n", argv[0]);
 return -1;
 }

 rc = chmod(argv[1], newMode);
 if (rc < 0) {
 fprintf(stderr, "Error: %s\n", strerror(errno));
 return -1;
 }

 return 0;
}

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <errno.h>

extern int errno;

– 10 – 15-213, F’02

fcntl System Call
#include <fcntl.h>
int fcntl(int fd, int cmd, /* arg */ ...); /* Number of args depends on

cmd */

A whole collection of things you can do with filesA whole collection of things you can do with files
 Make I/O synchronous or asynchronous
 File locking
 Receive signal when file is available for read/write
 Receive signal when file is modified by another process
 Keep file open across exec
 Anything else a particular device driver needs to do

F_DUPFD duplicates a file descriptorF_DUPFD duplicates a file descriptor
 Find the lowest numbered available file descriptor greater than or

equal to arg and make it be a copy of fd
 Compare to dup2 system call

 dup2 returns the named descriptor and will close the named descriptor
if it was in use before the call

– 11 – 15-213, F’02

fcntl example
You want to write tests for a new processorYou want to write tests for a new processor

 You want to do this using a Linux kernel
 Ability to run many processes, do I/O, handle interrupts, etc
 Really exercise the system, not just individual CPU tests in isolation

 There are things you need to do in supervisor mode
 You don’t want to rewrite the Linux kernel or define a new system

call interface

Write a device driver for a pseudo-deviceWrite a device driver for a pseudo-device
 dynamically linked to the kernel at run time
 Open this “device” as a file, and you can do fcntl on it
 Individual supervisor mode operations can be fcntl commands

Write your tests as user-space programsWrite your tests as user-space programs
 Can be multi-process, multi-threaded, do I/O, do whatever you want

with memory
 System calls to do small, specific operations

– 12 – 15-213, F’02

mmap System Call
Establishes a mapping between a process's addressEstablishes a mapping between a process's address

space and a file or shared memory objectspace and a file or shared memory object
 void *mmap(void *addr, size_t len, int prot, int flags, int

fildes, off_t off);
 pa = mmap(addr, len, prot, flags, fildes, off);

Allows files to be treated as memory buffersAllows files to be treated as memory buffers
UnmappingUnmapping saves changes automatically saves changes automatically

 int munmap(void *start, size_t length);

– 13 – 15-213, F’02

mmap() maps a file into your memory space.mmap() maps a file into your memory space.
Instead of a read/write paradigm, you use a memoryInstead of a read/write paradigm, you use a memory

access paradigm.access paradigm.
What does this buy you?What does this buy you?
Does it improve performance by avoiding the overheadDoes it improve performance by avoiding the overhead

of system calls?of system calls?

– 14 – 15-213, F’02

Directory Manipulation
Directories, while technically files, are handled in aDirectories, while technically files, are handled in a

special mannerspecial manner
opendiropendir
readdirreaddir
closedirclosedir
rewinddirrewinddir

– 15 – 15-213, F’02

opendir System Call
Open a directory stream corresponding to the namedOpen a directory stream corresponding to the named

directorydirectory
 DIR *opendir(const char *name)

Equivalent to the open system call for filesEquivalent to the open system call for files

– 16 – 15-213, F’02

readdir
Read a directory entryRead a directory entry

 int readdir(unsigned int fd, struct dirent *dirp, unsigned int
count)

Reads the next directory entry to Reads the next directory entry to dirpdirp. Count is ignored.. Count is ignored.

struct dirent
 {
 long d_ino; /* inode number */
 off_t d_off; /* offset to this dirent */
 unsigned short d_reclen; /* length of this d_name */
 char d_name [NAME_MAX+1]; /* file name (null-terminated) */
 }

– 17 – 15-213, F’02

closedir and rewinddir
closedirclosedir closes the directory stream closes the directory stream

 Equivalent to the close system call for files

rewinddirrewinddir resets the position of the directory stream to resets the position of the directory stream to
the beginningthe beginning
 Seeks to the first entry in the directory

seekdirseekdir sets the location of the directory stream sets the location of the directory stream
 Equivalent to the seek system call for files

What kind of program would use these?What kind of program would use these?

– 18 – 15-213, F’02

Finding file permissions
Suppose you want to know if a certain path is anSuppose you want to know if a certain path is an

executable fileexecutable file
 /usr/home/oscar/a/b/c

How can you do it without traversing the path andHow can you do it without traversing the path and
reading all the individual directories?reading all the individual directories?

– 19 – 15-213, F’02

Memory Allocation
Malloc, calloc, realloc, free, allocaMalloc, calloc, realloc, free, alloca
These are really library calls, not system calls.These are really library calls, not system calls.
The actual system call is The actual system call is sbrksbrk

 Sets the limit on the heap you are allowed to use
 Essentially, gives us a hunk of virtual address space to use
 But as users, we don’t normally call sbrk

Malloc, free and friends manage the memoryMalloc, free and friends manage the memory
 No system calls
 Just touch the virtual address, and the VM system allocates

the actual memory we need.

– 20 – 15-213, F’02

Memory Allocation
The main playersThe main players

 malloc
 calloc
 realloc
 free

 alloca

Kernel Virtual Memory

User Stack
(created at run time)

Unused

Kernel Virtual Memory

User Stack
(created at run time)

Shared Libraries
(memory mapped)

Run-time Heap
(created at run time)

Read-only code and data

Read/write data

0xffffffff

0xc0000000

0x40000000

0x08048000

– 21 – 15-213, F’02

A Note on Alignment
Alignment is important when accessing dataAlignment is important when accessing data
Memory Memory allocatorsallocators really allocate chunks of bytes, so really allocate chunks of bytes, so

misalignment is easy to domisalignment is easy to do
Making sure that you allocate memory in properMaking sure that you allocate memory in proper

““chunkschunks”” and casting the return to the and casting the return to the ““chunk sizechunk size””
is criticalis critical
 Always cast return value of malloc to data type you want to

point to

– 22 – 15-213, F’02

alloca
allocaalloca allocates memory in the stack frame of the caller allocates memory in the stack frame of the caller

 The specific function (main, foobar, etc.)
 Alloca’ing beyond the current stack limit results in undefined

behavior

There is no corresponding free callThere is no corresponding free call
 The memory is automatically freed when the function returns
 Warning: don’t pass pointers to alloca’d memory back up the

call stack!
 Can safely pass down, though

– 23 – 15-213, F’02

malloc
Returns a pointer to a block of at least size bytes Returns a pointer to a block of at least size bytes –– not not

zero filled! Allocated from the heapzero filled! Allocated from the heap
 void *malloc(size_t size);
 int *ptr = (int *) malloc(value * sizeof(int));

Be careful to allocate enough memoryBe careful to allocate enough memory
 Overrun on the space is undefined
 Common error:

 char *cptr = (char *) malloc (strlen(buf) * sizeof(char))
» strlen doesn’t account for the NULL terminator

 Fix:
 char *cptr = (char *) malloc ((strlen(buf)+1) * sizeof(char))

– 24 – 15-213, F’02

Zeroing Memory
Sometimes before you use memory returned by Sometimes before you use memory returned by mallocmalloc,,

you want to zero ityou want to zero it
 Or maybe set it to a specific value

memsetmemset sets a chunk of memory to a specific value sets a chunk of memory to a specific value
 void *memset(void *s, int c, size_t n);

Set this memory to this value for this length

– 25 – 15-213, F’02

calloc
void *calloc(size_t nelem, size_t elsize);void *calloc(size_t nelem, size_t elsize);
Will always zero memory that is returnedWill always zero memory that is returned
Essentially equivalent to Essentially equivalent to mallocmalloc + + memsetmemset
It takes time to zero the memory, so frequent calls toIt takes time to zero the memory, so frequent calls to

calloccalloc can be more costly that just can be more costly that just mallocmalloc
 A design consideration for your program

– 26 – 15-213, F’02

realloc
Allows modification of the specified blockAllows modification of the specified block

 void *realloc(void *ptr, size_t size)

Special semanticsSpecial semantics
 Changes the size of the block pointed to by ptr to size bytes

and returns a pointer to the (possibly moved) block.
 Contents unchanged up to the smaller of the new or old

sizes
 Implied copy when block is moved

 If ptr is NULL, behaves like malloc
 If pts in non-NULL and size is 0, behaves like free

– 27 – 15-213, F’02

free
Returns memory to the process for (possible) laterReturns memory to the process for (possible) later

reallocationreallocation
 Memory is not returned to the system until the process

actually terminates

Memory is automatically Memory is automatically freefree’’dd on process termination on process termination
 However, it is always a good idea to explicitly free any

memory that is allocated from the heap
 Helps to avoid memory leaks; aids program checkers

During program execution you should always freeDuring program execution you should always free
allocalloc’’d memory when you dond memory when you don’’t need it anymoret need it anymore
 In this class it is considered an error not to do so
 But you don’t have to free everything before exiting.
 Only during execution.

– 28 – 15-213, F’02

malloc vs. calloc
Sometimes performance considerations dictate which one to useSometimes performance considerations dictate which one to use

 Writing to memory is really bad for performance if you don’t have
to.

What if you are allocating a buffer and you are going to copy aWhat if you are allocating a buffer and you are going to copy a
string into it?string into it?
 What if the string is not as big as the buffer?

What if you are allocating a data structure containing pointers?What if you are allocating a data structure containing pointers?

– 29 – 15-213, F’02

Memory Leak
A leak in a program's dynamic store allocation logic that causes itA leak in a program's dynamic store allocation logic that causes it

to fail to reclaim memory in the heap after it has finished usingto fail to reclaim memory in the heap after it has finished using
it, eventually causing the program to fail due to lack of memoryit, eventually causing the program to fail due to lack of memory

Simple example:Simple example:

char *ptr = (char *) malloc(…);
…
ptr = (char *) malloc(…);

Initial allocation

Program loses track of initial
allocation when ptr is overwritten
with address of new chunk

– 30 – 15-213, F’02

Summary of kernel-level I/O
The Unix kernel gives us files as an abstraction: aThe Unix kernel gives us files as an abstraction: a

named stream of bytesnamed stream of bytes
System calls for access: open, close, read, write, System calls for access: open, close, read, write, ……

Higher level abstractions are at the application level Higher level abstractions are at the application level ……
 …… or libraries or libraries

– 31 – 15-213, F’02

Standard I/O Functions
The C standard library (The C standard library (libclibc.a.a) contains a collection of) contains a collection of

higher-level higher-level standard I/O standard I/O functionsfunctions
 Documented in Appendix B of K&R.

Examples of standard I/O functions:Examples of standard I/O functions:
 Opening and closing files (fopen and fclose)
 Reading and writing bytes (fread and fwrite)
 Reading and writing text lines (fgets and fputs)
 Formatted reading and writing (fscanf and fprintf)

– 32 – 15-213, F’02

Simple Buffered I/O
What does buffering buy us?What does buffering buy us?

Simple Unbuffered I/O:
int getchar(void)
{

char c;
return (read(0, &c, 1) ==1) ?

(unsigned char) c : EOF;
}

Simple Buffered I/O:
int getchar(void)
{

static char buf[BUFSIZE];
static char *bufp = buf;
static int n = 0;
if (n == 0) { // buffer is empty

n = read(0, buf, sizeof(buf));
bufp = buf;

}
return (- - n >= 0) ?

(unsigned char) *bufp++ : EOF;
}

Note where EOF
comes from.

– 33 – 15-213, F’02

Standard I/O Streams
Standard I/O models open files as Standard I/O models open files as streamsstreams

 Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams (definedC programs begin life with three open streams (defined
in in stdiostdio.h.h))
 stdin (standard input)
 stdout (standard output)
 stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
 fprintf(stdout, “Hello, world\n”);
}

– 34 – 15-213, F’02

Buffering in Standard I/O
Standard I/O functions use buffered I/OStandard I/O functions use buffered I/O

printf(“h”);

h e l l o \n . .

printf(“e”);
printf(“l”);

printf(“l”);
printf(“o”);

printf(“\n”);

fflush(stdout);

buf

write(1, buf, 6);
buf += 6;

– 35 – 15-213, F’02

Standard I/O Buffering in Action
You can see this buffering in action for yourself, usingYou can see this buffering in action for yourself, using

the Unix the Unix stracestrace program: program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...) = 6
...
_exit(0) = ?

#include <stdio.h>

int main()
{
 printf("h");
 printf("e");
 printf("l");
 printf("l");
 printf("o");
 printf("\n");
 fflush(stdout);
 exit(0);
}

– 36 – 15-213, F’02

Unix I/O vs. Standard I/O
Standard I/O is implemented using low-level Unix I/O.Standard I/O is implemented using low-level Unix I/O.

Which ones should you use in your programs?Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

 Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

– 37 – 15-213, F’02

Exercise
A program needs to seek to random places in a file andA program needs to seek to random places in a file and

write one small record in each place.write one small record in each place.
Should it use the stdio library or Unix system calls?Should it use the stdio library or Unix system calls?

What about a compiler, which reads one character at aWhat about a compiler, which reads one character at a
time sequentially through a file containing sourcetime sequentially through a file containing source
code?code?

– 38 – 15-213, F’02

Pros and Cons of Unix I/O
ProsPros

 Unix I/O is the most general and lowest overhead form of I/O.
 All other I/O packages are implemented using Unix I/O

functions.
 Unix I/O provides functions for accessing file metadata.

ConsCons
 Dealing with short counts is tricky and error prone.
 Efficient reading of text lines requires some form of

buffering, also tricky and error prone.
 Both of these issues are addressed by the standard I/O

package.

– 39 – 15-213, F’02

Pros and Cons of Standard I/O
Pros:Pros:

 Buffering increases efficiency by decreasing the number of
read and write system calls.
 Usually
 Unless you’re transferring blocks of data >= the buffer size
 Or unless you’re seeking randomly, not using the buffer

 Higher level of abstraction makes it easier to use
 Usually
 Example: Short counts are handled automatically.

» There’s a concept of EOF
 More likely to avoid bugs

 Portability
 De-facto part of the C language, independent of O. S.

– 40 – 15-213, F’02

Pros and Cons of Standard I/O
Cons:Cons:

 “Usually” more efficient and easier to use
 For big blocks of data, an extra layer of library calls reduces

efficiency
 For many seeks, it’s even worse: Fill a buffer and don’t use it

 Provides no function for accessing file metadata
 Not appropriate for input and output on network sockets
 There are poorly documented restrictions on streams that

interact badly with restrictions on sockets

– 41 – 15-213, F’02

Pros and Cons of Standard I/O (cont)
Restrictions on streams:Restrictions on streams:

 Restriction 1: input function cannot follow output function
without intervening call to fflush, fseek, fsetpos, or
rewind.
 Latter three functions all use lseek to change file position.

 Restriction 2: output function cannot follow an input
function with intervening call to fseek, fsetpos, or rewind.

Restriction on sockets:Restriction on sockets:
 You are not allowed to change the file position of a socket.

– 42 – 15-213, F’02

Choosing I/O Functions
Use the highest-level I/O functions you can.Use the highest-level I/O functions you can.

 Many C programmers are able to do all of their work using
the standard I/O functions.

When to use standard I/O?When to use standard I/O?
 Usually.
 Especially when working with disk or terminal files.
 Especially when you’re doing something that standard I/O

does anyway.
 Don’t re-invent library functions yourself!

When to use raw Unix I/OWhen to use raw Unix I/O
 When you need to fetch file metadata.
 In rare cases when you need absolute highest performance.

– 43 – 15-213, F’02

Question
Suppose a program generates huge arrays of data inSuppose a program generates huge arrays of data in

memory, multi-megabytes, and periodically thememory, multi-megabytes, and periodically the
program writes a whole array to a file. Each array isprogram writes a whole array to a file. Each array is
written in its entirety, and just once.written in its entirety, and just once.

Is it more efficient to use Is it more efficient to use writewrite system calls or the stdio system calls or the stdio
library to write the array?library to write the array?

– 44 – 15-213, F’02

Question
The operating system kernel has a pool of buffers forThe operating system kernel has a pool of buffers for

disk blocks. If you read a file one character at a time,disk blocks. If you read a file one character at a time,
the kernel does not go to the disk for each character,the kernel does not go to the disk for each character,
because it has the whole disk block in a buffer.because it has the whole disk block in a buffer.

When a program uses When a program uses freadfread, the library function has its, the library function has its
own buffer in user space. So essentially, data isown buffer in user space. So essentially, data is
being copied from the buffer pool to being copied from the buffer pool to freadfread’’s buffer,s buffer,
and then to the applicationand then to the application’’s own buffer. So the datas own buffer. So the data
is copied at least twice.is copied at least twice.

In that case, is it more efficient to use In that case, is it more efficient to use freadfread to read a to read a
character at a time, than to use character at a time, than to use readread??

– 45 – 15-213, F’02

For Further Information

W. Richard Stevens, Advanced Programming in theW. Richard Stevens, Advanced Programming in the
Unix Environment, Addison Wesley, 1993.Unix Environment, Addison Wesley, 1993.

Brian W. Kernighan and Rob Pike, The UnixBrian W. Kernighan and Rob Pike, The Unix
Programming Environment, Prentice-Hall, 1984Programming Environment, Prentice-Hall, 1984

